Photothermal Self-Oscillation and Laser Cooling of Graphene Optomechanical Systems

被引:179
作者
Barton, Robert A. [1 ]
Storch, Isaac R. [2 ]
Adiga, Vivekananda P. [1 ]
Sakakibara, Reyu [4 ]
Cipriany, Benjamin R. [1 ]
Ilic, B. [5 ]
Wang, Si Ping [2 ]
Ong, Peijie [3 ]
McEuen, Paul L. [2 ,6 ]
Parpia, Jeevak M. [2 ]
Craighead, Harold G. [1 ]
机构
[1] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[3] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[5] Cornell Univ, Cornell NanoScale Sci & Technol Facil, Ithaca, NY 14853 USA
[6] Cornell Univ, Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Graphene; optomechanics; nanoelectromechanical systems (NEMS); photothermal force; laser cooling; self-oscillation; QUANTUM GROUND-STATE; SINGLE-LAYER GRAPHENE; NANOMECHANICAL RESONATORS; MECHANICAL RESONATORS; CAVITY OPTOMECHANICS; MONOLAYER GRAPHENE; ELECTRICAL READOUT; RADIATION-PRESSURE; MICROMIRROR; REGIME;
D O I
10.1021/nl302036x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
By virtue of their low mass and stiffness, atomically thin mechanical resonators are attractive candidates for use in optomechanics. Here, we demonstrate photothermal back-action in a graphene mechanical resonator comprising one end of a Fabry-Perot cavity. As a demonstration of the utility of this effect, we show that a continuous wave laser can be used to cool a graphene vibrational mode or to power a graphene-based tunable frequency oscillator. Owing to graphene's high thermal conductivity and optical absorption, photothermal optomechanics is efficient in graphene and could ultimately enable laser cooling to the quantum ground state or applications such as photonic signal processing.
引用
收藏
页码:4681 / 4686
页数:6
相关论文
共 43 条
[1]   Near-field cavity optomechanics with nanomechanical oscillators [J].
Anetsberger, G. ;
Arcizet, O. ;
Unterreithmeier, Q. P. ;
Riviere, R. ;
Schliesser, A. ;
Weig, E. M. ;
Kotthaus, J. P. ;
Kippenberg, T. J. .
NATURE PHYSICS, 2009, 5 (12) :909-914
[2]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74
[3]  
Arcizet O., 2006, PHYS REV A, V73, P71
[4]  
Bagheri M, 2011, NAT NANOTECHNOL, V6, P726, DOI [10.1038/NNANO.2011.180, 10.1038/nnano.2011.180]
[5]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[6]   Fabrication and performance of graphene nanoelectromechanical systems [J].
Barton, Robert A. ;
Parpia, Jeevak ;
Craighead, Harold G. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (05)
[7]   High, Size-Dependent Quality Factor in an Array of Graphene Mechanical Resonators [J].
Barton, Robert A. ;
Ilic, B. ;
van der Zande, Arend M. ;
Whitney, William S. ;
McEuen, Paul L. ;
Parpia, Jeevak M. ;
Craighead, Harold G. .
NANO LETTERS, 2011, 11 (03) :1232-1236
[8]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[9]   Realization of an Optomechanical Interface Between Ultracold Atoms and a Membrane [J].
Camerer, Stephan ;
Korppi, Maria ;
Joeckel, Andreas ;
Hunger, David ;
Haensch, Theodor W. ;
Treutlein, Philipp .
PHYSICAL REVIEW LETTERS, 2011, 107 (22)
[10]   Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography [J].
Carr, DW ;
Craighead, HG .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06) :2760-2763