Constant diameter and constant width of spherical convex bodies

被引:5
|
作者
Han, Huhe [1 ]
Wu, Denghui [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling, Shaanxi, Peoples R China
关键词
Constant width; Constant diameter; Polar set; Spherical convex body;
D O I
10.1007/s00010-020-00740-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that a spherical convex body C is of constant diameter tau if and only if C is of constant width tau, for 0 < tau < pi. Moreover, some applications to Wulff shapes are given.
引用
收藏
页码:167 / 174
页数:8
相关论文
共 50 条
  • [1] Constant diameter and constant width of spherical convex bodies
    Huhe Han
    Denghui Wu
    Aequationes mathematicae, 2021, 95 : 167 - 174
  • [2] Spherical bodies of constant width
    Marek Lassak
    Michał Musielak
    Aequationes mathematicae, 2018, 92 : 627 - 640
  • [3] Spherical bodies of constant width
    Lassak, Marek
    Musielak, Micha
    AEQUATIONES MATHEMATICAE, 2018, 92 (04) : 627 - 640
  • [4] When is a spherical body of constant diameter of constant width?
    Lassak, Marek
    AEQUATIONES MATHEMATICAE, 2020, 94 (02) : 393 - 400
  • [5] When is a spherical body of constant diameter of constant width?
    Marek Lassak
    Aequationes mathematicae, 2020, 94 : 393 - 400
  • [6] Convex bodies of constant width and constant brightness
    Howard, R
    ADVANCES IN MATHEMATICS, 2006, 204 (01) : 241 - 261
  • [7] On convex bodies of constant width
    Bazylevych, L. E.
    Zarichnyi, M. M.
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (11) : 1699 - 1704
  • [8] Hyperspaces of convex bodies of constant width
    Antonyan, Sergey A.
    Jonard-Perez, Natalia
    Juarez-Ordonez, Saul
    TOPOLOGY AND ITS APPLICATIONS, 2015, 196 : 347 - 361
  • [9] Geodesic diameter of bodies of constant width
    Zalgaller V.A.
    Journal of Mathematical Sciences, 2009, 161 (3) : 373 - 374
  • [10] Self-dual Wulff shapes and spherical convex bodies of constant width π/2
    Han, Huhe
    Nishimura, Takashi
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2017, 69 (04) : 1475 - 1484