Power System Oscillation Damping with Adaptive Unified Power Flow Controller

被引:0
作者
Jena, Ramakanta [1 ]
Swain, Sarat Chandra [1 ]
Panda, Prafulla Chandra [1 ]
Bhattacharya, Ritwik [1 ]
机构
[1] KIIT Univ, Sch Elect Engn, Bhubaneswar, Orissa, India
来源
2016 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION, & AUTOMATION (ICACCA) (FALL) | 2016年
关键词
non linear control; transient stability; power system oscillation; unified power flow controller; FEEDBACK LINEARIZATION; FACTS DEVICES; STABILITY; ENHANCEMENT; EXCITATION; DESIGN; MODEL; UPFC;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the family of FACTS devices The unified power flow controller is treated as a most powerful device which increase the transient stability of the system. a suggested controller is used here which can eliminate the disadvantages of the conventional controllers generally used in power system stability and give the better dynamic characteristics. The novel approach proposed here includes developing a non-linear dynamic approximation of the power network, using a unified power flow controller as a controller, augmenting the unified power flow controller with non-linear adaptive control based on back-stepping for oscillation damping, and using an adaptive control law to approximate uncertain parameters that contribute significantly to the stability of the power system. The feasibility of the proposed technique is validated using simulation on a single-machine to infinite-bus system.
引用
收藏
页码:204 / 208
页数:5
相关论文
共 23 条
[1]   Analysis of power system stability enhancement via excitation and facts-based stabilizers [J].
Abido, MA ;
Abdel-Magid, YL .
ELECTRIC POWER COMPONENTS AND SYSTEMS, 2004, 32 (01) :75-91
[2]   The energy function of a general multimachine system with a unified power flow controller [J].
Azbe, V ;
Gabrijel, U ;
Povh, D ;
Mihalic, R .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (03) :1478-1485
[3]   Choice of FACTS device control inputs for damping interarea oscillations [J].
Farsangi, MM ;
Song, YH ;
Lee, KY .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2004, 19 (02) :1135-1143
[4]   Stabilizing control of a high-order generator model by adaptive feedback linearization [J].
Fregene, K ;
Kennedy, D .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2003, 18 (01) :149-156
[5]   THE UNIFIED POWER-FLOW CONTROLLER - A NEW APPROACH TO POWER TRANSMISSION CONTROL [J].
GYUGYI, L ;
SCHAUDER, CD ;
WILLIAMS, SL ;
RIETMAN, TR ;
TORGERSON, DR ;
EDRIS, A .
IEEE TRANSACTIONS ON POWER DELIVERY, 1995, 10 (02) :1085-1097
[6]   UNIFIED POWER-FLOW CONTROL CONCEPT FOR FLEXIBLE AC TRANSMISSION-SYSTEMS [J].
GYUGYI, L .
IEE PROCEEDINGS-C GENERATION TRANSMISSION AND DISTRIBUTION, 1992, 139 (04) :323-331
[7]  
Hingorani N. G., 1999, UNDERSTANDINGFACTS C
[8]   Nonlinear adaptive control of systems in feedback form: An alternative to adaptive backstepping [J].
Karagiannis, Dimitrios ;
Astolfi, Alessandro .
SYSTEMS & CONTROL LETTERS, 2008, 57 (09) :733-739
[9]   Definition and classification of power system stability [J].
Kundur, P ;
Paserba, J ;
Ajjarapu, V ;
Andersson, G ;
Bose, A ;
Canizares, C ;
Hatziargyriou, N ;
Hill, D ;
Stankovic, A ;
Taylor, C ;
Van Cutsem, T ;
Vittal, V .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2004, 19 (03) :1387-1401
[10]  
Kundur P, 1994, POWER SYSTEM STABILI