XYLEM INTERMIXED WITH PHLOEM1, a leucine-rich repeat receptor-like kinase required for stem growth and vascular development in Arabidopsis thaliana

被引:47
作者
Bryan, Anthony C. [2 ]
Obaidi, Adam [2 ]
Wierzba, Michael [2 ]
Tax, Frans E. [1 ,2 ]
机构
[1] Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
LRR RLKs; Phloem; Procambium; Vasculature; Xylem; HOMEOBOX GENE; EXPRESSION; DIFFERENTIATION; SHOOT; AUXIN; MUTATIONS; MERISTEMS; CLAVATA1; POLARITY; ENCODES;
D O I
10.1007/s00425-011-1489-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The regulation of cell specification in plants is particularly important in vascular development. The vascular system is comprised two differentiated tissue types, the xylem and phloem, which form conductive elements for the transport of water, nutrients and signaling molecules. A meristematic layer, the procambium, is located between these two differentiated cell types and divides to initiate vascular growth. We report the identification of a receptor-like kinase (RLK) that is expressed in the vasculature. Histochemical analyses of mutants in this kinase display an aberrant accumulation of highly lignified cells, typical of xylem or fiber cells, within the phloem. In addition, phloem cells are sometimes located adjacent to xylem cells in these mutants. We, therefore, named this RLK XYLEM INTERMIXED WITH PHLOEM 1 (XIP1). Analyses of longitudinal profiles of xip1 mutant stems show malformed cell files, indicating defects in oriented cell divisions or cell morphology. We propose that XIP1 prevents ectopic lignification in phloem cells and is necessary to maintain the organization of cell files or cell morphology in conductive elements.
引用
收藏
页码:111 / 122
页数:12
相关论文
共 38 条
[1]   Characterization of Transcriptome Remodeling during Cambium Formation Identifies MOL1 and RUL1 As Opposing Regulators of Secondary Growth [J].
Agusti, Javier ;
Lichtenberger, Raffael ;
Schwarz, Martina ;
Nehlin, Lilian ;
Greb, Thomas .
PLOS GENETICS, 2011, 7 (02)
[2]   Development of the vascular system in the inflorescence stem of Arabidopsis [J].
Altamura, MM ;
Possenti, M ;
Matteucci, A ;
Baima, S ;
Ruberti, I ;
Morelli, G .
NEW PHYTOLOGIST, 2001, 151 (02) :381-389
[3]   The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems [J].
Baima, S ;
Possenti, M ;
Matteucci, A ;
Wisman, E ;
Altamura, MM ;
Ruberti, I ;
Morelli, G .
PLANT PHYSIOLOGY, 2001, 126 (02) :643-655
[4]   A gene expression map of the Arabidopsis root [J].
Birnbaum, K ;
Shasha, DE ;
Wang, JY ;
Jung, JW ;
Lambert, GM ;
Galbraith, DW ;
Benfey, PN .
SCIENCE, 2003, 302 (5652) :1956-1960
[5]   APL regulates vascular tissue identity in Arabidopsis [J].
Bonke, M ;
Thitamadee, S ;
Mähönen, AP ;
Hauser, MT ;
Helariutta, Y .
NATURE, 2003, 426 (6963) :181-186
[6]   A high-resolution root spatiotemporal map reveals dominant expression patterns [J].
Brady, Siobhan M. ;
Orlando, David A. ;
Lee, Ji-Young ;
Wang, Jean Y. ;
Koch, Jeremy ;
Dinneny, Jose R. ;
Mace, Daniel ;
Ohler, Uwe ;
Benfey, Philip N. .
SCIENCE, 2007, 318 (5851) :801-806
[7]   Regulation of CLV3 expression by two homeobox genes in Arabidopsis [J].
Brand, U ;
Grünewald, M ;
Hobe, M ;
Simon, R .
PLANT PHYSIOLOGY, 2002, 129 (02) :565-575
[8]  
CLARK SE, 1993, DEVELOPMENT, V119, P397
[9]   The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis [J].
Clark, SE ;
Williams, RW ;
Meyerowitz, EM .
CELL, 1997, 89 (04) :575-585
[10]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743