NEPSscaling: plausible value estimation for competence tests administered in the German National Educational Panel Study

被引:2
作者
Scharl, Anna [1 ]
Zink, Eva [1 ]
机构
[1] Leibniz Inst Educ Trajectories, Wilhelmsplatz 3, D-96047 Bamberg, Germany
关键词
National Educational Panel Study; Plausible values; Competence; NEPSscaling; Large-scale assessment; MISSING-DATA; MULTIPLE-IMPUTATION; PACKAGE;
D O I
10.1186/s40536-022-00145-5
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Educational large-scale assessments (LSAs) often provide plausible values for the administered competence tests to facilitate the estimation of population effects. This requires the specification of a background model that is appropriate for the specific research question. Because the German National Educational Panel Study (NEPS) is an ongoing longitudinal LSA, the range of potential research questions and, thus, the number of potential background variables for the plausible value estimation grow with each new assessment wave. To facilitate the estimation of plausible values for data users of the NEPS, the R package NEPSscaling allows their estimation following the scaling standards in the NEPS without requiring in-depth psychometric expertise in item response theory. The package requires the user to prepare the data for the background model only. Then, the appropriate item response model including the linking approach adopted for the NEPS is selected automatically, while a nested multiple imputation scheme based on the chained equation approach handles missing values in the background data. For novice users, a graphical interface is provided that only requires minimal knowledge of the R language. Thus, NEPSscaling can be used to estimate cross-sectional and longitudinally linked plausible values for all major competence assessments in the NEPS.
引用
收藏
页数:15
相关论文
共 33 条
  • [1] SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    Blewitt, Marnie E.
    Gendrel, Anne-Valerie
    Pang, Zhenyi
    Sparrow, Duncan B.
    Whitelaw, Nadia
    Craig, Jeffrey M.
    Apedaile, Anwyn
    Hilton, Douglas J.
    Dunwoodie, Sally L.
    Brockdorff, Neil
    Kay, Graham F.
    Whitelaw, Emma
    [J]. NATURE GENETICS, 2008, 40 (05) : 663 - 669
  • [2] Blossfeld HP, 2011, Z ERZIEHWISS, V14, P19, DOI 10.1007/s11618-011-0179-2
  • [3] Graphical and numerical diagnostic tools to assess suitability of multiple imputations and imputation models
    Bondarenko, Irina
    Raghunathan, Trivellore
    [J]. STATISTICS IN MEDICINE, 2016, 35 (17) : 3007 - 3020
  • [4] brms: An R Package for Bayesian Multilevel Models Using Stan
    Buerkner, Paul-Christian
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 80 (01): : 1 - 28
  • [5] Multiple Imputation for Missing Data via Sequential Regression Trees
    Burgette, Lane F.
    Reiter, Jerome P.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 172 (09) : 1070 - 1076
  • [6] Chalmers RP, 2012, J STAT SOFTW, V48, P1
  • [7] A comparison of inclusive and restrictive strategies in modern missing data procedures
    Collins, LM
    Schafer, JL
    Kam, CM
    [J]. PSYCHOLOGICAL METHODS, 2001, 6 (04) : 330 - 351
  • [8] Recursive partitioning for missing data imputation in the presence of interaction effects
    Doove, L. L.
    Van Buuren, S.
    Dusseldorp, E.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 72 : 92 - 104
  • [9] Fischer L., 2019, Psychological Test and Assessment Modeling, V61, P37
  • [10] Fuss Daniel, 2021, COMPETENCE DATA NEPS