Confined Crystals of the Smallest Phase-Change Material

被引:65
作者
Giusca, Cristina E. [1 ]
Stolojan, Vlad [1 ]
Sloan, Jeremy [2 ]
Boerrnert, Felix [3 ]
Shiozawa, Hidetsugu [1 ]
Sader, Kasim [4 ]
Ruemmeli, Mark H. [3 ,5 ]
Buechner, Bernd [3 ]
Silva, S. Ravi P. [1 ]
机构
[1] Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, Surrey, England
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[3] IFW Dresden, D-01171 Dresden, Germany
[4] UK SuperSTEM, Daresbury Lab, Warrington WA4 4AD, Cheshire, England
[5] Tech Univ Dresden, D-01062 Dresden, Germany
基金
英国工程与自然科学研究理事会;
关键词
Phase-change materials; GeTe; carbon nanotubes; scanning tunneling microscopy; electron microscopy; WALLED CARBON NANOTUBES; RANDOM-ACCESS MEMORY; ELECTRONIC-STRUCTURE; NONVOLATILE; FILMS; DEPOSITION;
D O I
10.1021/nl4010354
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The demand for high-density memory in tandem with limitations imposed by the minimum feature size of current storage devices has created a need for new materials that can store information in smaller volumes than currently possible. Successfully employed in commercial optical data storage products, phase-change materials, that can reversibly and rapidly change from an amorphous phase to a crystalline phase when subject to heating or cooling have been identified for the development of the next generation electronic memories. There are limitations to the miniaturization of these devices due to current synthesis and theoretical considerations that place a lower limit of 2 nm on the minimum bit size, below which the material does not transform in the structural phase. We show here that by using carbon nanotubes of less than 2 nm diameter as templates phase-change nanowires confined to their smallest conceivable scale are obtained. Contrary to previous experimental evidence and theoretical expectations, the nanowires are found to crystallize at this scale and display amorphous-to-crystalline phase changes, fulfilling an important prerequisite of a memory element. We show evidence for the smallest phase-change material, extending thus the size limit to explore phase-change memory devices at extreme scales.
引用
收藏
页码:4020 / 4027
页数:8
相关论文
共 50 条
[11]   Sn-filled single-crystalline Wurtzite-type ZnS nanotubes [J].
Hu, JQ ;
Bando, Y ;
Zhan, JH ;
Golberg, D .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (35) :4606-4609
[12]   STRUCTURAL INSTABILITY OF ULTRAFINE PARTICLES OF METALS [J].
IIJIMA, S ;
ICHIHASHI, T .
PHYSICAL REVIEW LETTERS, 1986, 56 (06) :616-619
[13]   Understanding the phase-change mechanism of rewritable optical media [J].
Kolobov, AV ;
Fons, P ;
Frenkel, AI ;
Ankudinov, AL ;
Tominaga, J ;
Uruga, T .
NATURE MATERIALS, 2004, 3 (10) :703-708
[14]   Highly scalable non-volatile and ultra-lowpower phase-change nanowire memory [J].
Lee, Se-Ho ;
Jung, Yeonwoong ;
Agarwal, Ritesh .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :626-630
[15]   Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes [J].
Li, LJ ;
Khlobystov, AN ;
Wiltshire, JG ;
Briggs, GAD ;
Nicholas, RJ .
NATURE MATERIALS, 2005, 4 (06) :481-485
[16]   Low-bias electron transport properties of germanium telluride ultrathin films [J].
Liu, Jie ;
Anantram, M. P. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (06)
[17]   Synthesis and characterization of phase-change nanowires [J].
Meister, Stefan ;
Peng, Hailin ;
McIlwrath, Kevin ;
Jarausch, Konrad ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2006, 6 (07) :1514-1517
[18]   Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes [J].
Meyer, RR ;
Sloan, J ;
Dunin-Borkowski, RE ;
Kirkland, AI ;
Novotny, MC ;
Bailey, SR ;
Hutchison, JL ;
Green, MLH .
SCIENCE, 2000, 289 (5483) :1324-1326
[19]   Solution-phase deposition and nanopatterning of GeSbSe phase-change materials [J].
Milliron, Delia J. ;
Raoux, Simone ;
Shelby, Robertm. ;
Jordan-Sweet, Jean .
NATURE MATERIALS, 2007, 6 (05) :352-356
[20]   Atomic structure and electronic properties of single-walled carbon nanotubes [J].
Odom, TW ;
Huang, JL ;
Kim, P ;
Lieber, CM .
NATURE, 1998, 391 (6662) :62-64