Channelling auxin action: modulation of ion transport by indole-3-acetic acid

被引:45
|
作者
Becker, D [1 ]
Hedrich, R [1 ]
机构
[1] Julius von Sachs Inst Biosci, Bioctr, Dept Plant Mol Physiol & Biophys, D-97082 Wurzburg, Germany
关键词
auxin; early auxin response gene; gravitropism; ion channels;
D O I
10.1023/A:1015211231864
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The growth hormone auxin is a key regulator of plant cell division and elongation. Since plants lack muscles, processes involved in growth and movements rely on turgor formation, and thus on the transport of solutes and water. Modern electrophysiological techniques and molecular genetics have shed new light on the regulation of plant ion transporters in response to auxin. Guard cells, hypocotyls and coleoptiles have advanced to major model systems in studying auxin action. This review will therefore focus on the molecular mechanism by which auxin modulates ion transport and cell expansion in these model cell types.
引用
收藏
页码:349 / 356
页数:8
相关论文
共 50 条
  • [1] Channelling auxin action: modulation of ion transport by indole-3-acetic acid
    Dirk Becker
    Rainer Hedrich
    Plant Molecular Biology, 2002, 49 : 349 - 356
  • [2] Strategies to Produce Chlorinated Indole-3-Acetic Acid and Indole-3-Acetic Acid Intermediates
    Patallo, Eugenio P.
    Walter, Antje
    Milbredt, Daniela
    Thomas, Marion
    Neumann, Madeleine
    Caputi, Lorenzo
    O'Connor, Sarah
    Ludwig-Mueller, Jutta
    van Pee, Karl-Heinz
    CHEMISTRYSELECT, 2017, 2 (34): : 11148 - 11153
  • [3] The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis
    Linchuan Li
    Xianhui Hou
    Tomohiko Tsuge
    Maoyu Ding
    Takashi Aoyama
    Atsuhiro Oka
    Hongya Gu
    Yunde Zhao
    Li-Jia Qu
    Plant Cell Reports, 2008, 27 : 575 - 584
  • [4] The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis
    Li, Linchuan
    Hou, Xianhui
    Tsuge, Tomohiko
    Ding, Maoyu
    Aoyama, Takashi
    Oka, Atsuhiro
    Gu, Hongya
    Zhao, Yunde
    Qu, Li-Jia
    PLANT CELL REPORTS, 2008, 27 (03) : 575 - 584
  • [5] Effects of indole-3-acetic acid and auxin transport inhibitors on the style curvature of three Alpinia species (Zingiberaceae)
    Luo, Yin-Ling
    Bi, Ting-Ju
    Li, Dong
    Su, Zhi-Long
    Tao, Chuan
    Luo, Yan-Jiang
    Li, Qing-Jun
    ACTA PHYSIOLOGIAE PLANTARUM, 2012, 34 (05) : 2019 - 2025
  • [6] Protective action of indole-3-acetic acid on induced hepatocarcinoma in mice
    Mourao, Luciana R. M. B.
    Santana, Roberta S. S.
    Paulo, Livia M.
    Pugine, Silvana M. P.
    Chaible, Lucas M.
    Fukumasu, Heidge
    Dagli, Maria L. Z.
    de Melo, Mariza R.
    CELL BIOCHEMISTRY AND FUNCTION, 2009, 27 (01) : 16 - 22
  • [7] Role of Arabidopsis INDOLE-3-ACETIC ACID CARBOXYL METHYLTRANSFERASE 1 in auxin metabolism
    Takubo, Eiko
    Kobayashi, Makoto
    Hirai, Shoko
    Aoi, Yuki
    Ge, Chennan
    Dai, Xinhua
    Fukui, Kosuke
    Hayashi, Ken-ichiro
    Zhao, Yunde
    Kasahara, Hiroyuki
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 527 (04) : 1033 - 1038
  • [8] Bacterial catabolism of indole-3-acetic acid
    Tyler S. Laird
    Neptali Flores
    Johan H. J. Leveau
    Applied Microbiology and Biotechnology, 2020, 104 : 9535 - 9550
  • [9] Bacterial biosynthesis on indole-3-acetic acid
    Patten, CL
    Glick, BR
    CANADIAN JOURNAL OF MICROBIOLOGY, 1996, 42 (03) : 207 - 220
  • [10] Bacterial catabolism of indole-3-acetic acid
    Laird, Tyler S.
    Flores, Neptali
    Leveau, Johan H. J.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2020, 104 (22) : 9535 - 9550