Improved Optics in Monolithic Perovskite/Silicon Tandem Solar Cells with a Nanocrystalline Silicon Recombination Junction

被引:213
|
作者
Sahli, Florent [1 ]
Kamino, Brett A. [1 ,2 ]
Werner, Jeremie
Brauninger, Matthias [1 ]
Paviet-Salomon, Bertrand [2 ]
Barraud, Loris [2 ]
Monnard, Raphael [1 ]
Seif, Johannes Peter [1 ]
Tomasi, Andrea [1 ]
Jeangros, Quentin [1 ,3 ]
Hessler-Wyser, Aicha [1 ]
De Wolf, Stefaan [1 ,4 ]
Despeisse, Matthieu [2 ]
Nicolay, Sylvain [2 ]
Niesen, Bjoern [1 ,2 ]
Ballif, Christophe [1 ,2 ]
机构
[1] EPFL, Inst Microengn IMT, Photovolta & Thin Film Elect Lab PV Lab, Rue Maladiere 71b, CH-2002 Neuchatel, Switzerland
[2] CSEM, PV Ctr, Jaquet Droz 1, CH-2002 Neuchatel, Switzerland
[3] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
[4] KAUST, KAUST Solar Ctr KSC, Thuwal 239556900, Saudi Arabia
基金
瑞士国家科学基金会;
关键词
microcrystalline; multijunction; organic-inorganic perovskite; silicon heterojunction; tunnel junction; THIN; EFFICIENCY; CRYSTALLINE; FILMS;
D O I
10.1002/aenm.201701609
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Perovskite/silicon tandem solar cells are increasingly recognized as promising candidates for next-generation photovoltaics with performance beyond the single-junction limit at potentially low production costs. Current designs for monolithic tandems rely on transparent conductive oxides as an intermediate recombination layer, which lead to optical losses and reduced shunt resistance. An improved recombination junction based on nanocrystalline silicon layers to mitigate these losses is demonstrated. When employed in monolithic perovskite/silicon heterojunction tandem cells with a planar front side, this junction is found to increase the bottom cell photocurrent by more than 1 mA cm(-2). In combination with a cesium-based perovskite top cell, this leads to tandem cell power-conversion efficiencies of up to 22.7% obtained from J-V measurements and steady-state efficiencies of up to 22.0% during maximum power point tracking. Thanks to its low lateral conductivity, the nanocrystalline silicon recombination junction enables upscaling of monolithic perovskite/silicon heterojunction tandem cells, resulting in a 12.96 cm(2) monolithic tandem cell with a steady-state efficiency of 18%.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Reducing electrical losses of textured monolithic perovskite/silicon tandem solar cells by tailoring nanocrystalline silicon tunneling recombination junction
    Yan, Lingling
    Li, Yuxiang
    Shi, Biao
    Li, Yucheng
    Xu, Qiaojing
    Zhang, Boyu
    Chen, Yongliang
    Han, Wei
    Ren, Ningyu
    Huang, Qian
    Zhao, Ying
    Zhang, Xiaodan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 245
  • [2] Reducing electrical losses of textured monolithic perovskite/silicon tandem solar cells by tailoring nanocrystalline silicon tunneling recombination junction
    Yan, Lingling
    Li, Yuxiang
    Shi, Biao
    Li, Yucheng
    Xu, Qiaojing
    Zhang, Boyu
    Chen, Yongliang
    Han, Wei
    Ren, Ningyu
    Huang, Qian
    Zhao, Ying
    Zhang, Xiaodan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 245
  • [3] Monolithic Perovskite/Silicon-Heterojunction Tandem Solar Cells with Nanocrystalline Si/SiOx Tunnel Junction
    Mercaldo, Lucia V.
    Bobeico, Eugenia
    De Maria, Antonella
    Della Noce, Marco
    Ferrara, Manuela
    La Ferrara, Vera
    Lancellotti, Laura
    Rametta, Gabriella
    Sannino, Gennaro V.
    Usatii, Iurie
    Delli Veneri, Paola
    ENERGIES, 2021, 14 (22)
  • [4] 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
    Kevin A. Bush
    Axel F. Palmstrom
    Zhengshan J. Yu
    Mathieu Boccard
    Rongrong Cheacharoen
    Jonathan P. Mailoa
    David P. McMeekin
    Robert L. Z. Hoye
    Colin D. Bailie
    Tomas Leijtens
    Ian Marius Peters
    Maxmillian C. Minichetti
    Nicholas Rolston
    Rohit Prasanna
    Sarah Sofia
    Duncan Harwood
    Wen Ma
    Farhad Moghadam
    Henry J. Snaith
    Tonio Buonassisi
    Zachary C. Holman
    Stacey F. Bent
    Michael D. McGehee
    Nature Energy, 2
  • [5] 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
    Bush, Kevin A.
    Palmstrom, Axel F.
    Yu, Zhengshan J.
    Boccard, Mathieu
    Cheacharoen, Rongrong
    Mailoa, Jonathan P.
    McMeekin, David P.
    Hoye, Robert L. Z.
    Bailie, Colin D.
    Leijtens, Tomas
    Peters, Ian Marius
    Minichetti, Maxmillian C.
    Rolston, Nicholas
    Prasanna, Rohit
    Sofia, Sarah
    Harwood, Duncan
    Ma, Wen
    Moghadam, Farhad
    Snaith, Henry J.
    Buonassisi, Tonio
    Holman, Zachary C.
    Bent, Stacey F.
    McGehee, Michael D.
    NATURE ENERGY, 2017, 2 (04):
  • [6] Thickness Optimization of Front and Recombination ITO in Monolithic Perovskite/Silicon Tandem Solar Cells
    Kabakli, Oezde Seyma
    McMullin, Kaitlyn
    Messmer, Christoph
    Bett, Alexander J.
    Tutsch, Leonard
    Bivour, Martin
    Hermle, Martin
    Glunz, Stefan W.
    Schulze, Patricia S. C.
    SOLAR RRL, 2024, 8 (20):
  • [7] Nanocrystalline silicon-oxygen based tunneling recombination junctions in perovskite/silicon heterojunction tandem solar cells
    Li, Yuxiang
    Wang, Xuejiao
    Xu, Qiaojing
    Li, Yucheng
    Zhang, Yubo
    Han, Wei
    Sun, Cong
    Zhu, Zhao
    Huang, Qian
    Shi, Biao
    Zhao, Ying
    Zhang, Xiaodan
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 262
  • [8] Comparative architecture in monolithic perovskite/silicon tandem solar cells
    Sayantan Mazumdar
    Ying Zhao
    Xiaodan Zhang
    Science China(Physics,Mechanics & Astronomy), 2023, Mechanics & Astronomy)2023 (01) : 64 - 88
  • [9] Insights into the Development of Monolithic Perovskite/Silicon Tandem Solar Cells
    Chen, Bingbing
    Ren, Ningyu
    Li, Yucheng
    Yan, Lingling
    Mazumdar, Sayantan
    Zhao, Ying
    Zhang, Xiaodan
    ADVANCED ENERGY MATERIALS, 2022, 12 (04)
  • [10] Comparative architecture in monolithic perovskite/silicon tandem solar cells
    Mazumdar, Sayantan
    Zhao, Ying
    Zhang, Xiaodan
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2023, 66 (01)