High damage tolerance of electrochemically lithiated silicon

被引:220
作者
Wang, Xueju [1 ]
Fan, Feifei [1 ]
Wang, Jiangwei [2 ]
Wang, Haoran [3 ]
Tao, Siyu [1 ]
Yang, Avery [1 ]
Liu, Yang [4 ]
Chew, Huck Beng [3 ]
Mao, Scott X. [2 ]
Zhu, Ting [1 ]
Xia, Shuman [1 ]
机构
[1] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
[3] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA
[4] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA
基金
美国国家科学基金会;
关键词
LITHIUM-ION BATTERIES; IN-SITU TEM; AMORPHOUS-SILICON; FRACTURE; ELECTRODES; STRESS; ANODES; FILMS; NANOWIRES; INTERCALATION;
D O I
10.1038/ncomms9417
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro-chemo-mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries.
引用
收藏
页数:7
相关论文
共 40 条
[1]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[2]   Mechanical behavior of electrochemically lithiated silicon [J].
Berla, Lucas A. ;
Lee, Seok Woo ;
Cui, Yi ;
Nix, William D. .
JOURNAL OF POWER SOURCES, 2015, 273 :41-51
[3]   Robustness of amorphous silicon during the initial lithiation/delithiation cycle [J].
Berla, Lucas A. ;
Lee, Seok Woo ;
Ryu, Ill ;
Cui, Yi ;
Nix, William D. .
JOURNAL OF POWER SOURCES, 2014, 258 :253-259
[4]   In situ tensile and creep testing of lithiated silicon nanowires [J].
Boles, Steven T. ;
Thompson, Carl V. ;
Kraft, Oliver ;
Moenig, Reiner .
APPLIED PHYSICS LETTERS, 2013, 103 (26)
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation [J].
Cheng, Yang-Tse ;
Verbrugge, Mark W. .
JOURNAL OF POWER SOURCES, 2009, 190 (02) :453-460
[7]   Real-Time Measurement of Stress and Damage Evolution during Initial Lithiation of Crystalline Silicon [J].
Chon, M. J. ;
Sethuraman, V. A. ;
McCormick, A. ;
Srinivasan, V. ;
Guduru, P. R. .
PHYSICAL REVIEW LETTERS, 2011, 107 (04)
[8]   Surface effects on the structure and lithium behavior in lithiated silicon: A first principles study [J].
Chou, Chia-Yun ;
Hwang, Gyeong S. .
SURFACE SCIENCE, 2013, 612 :16-23
[9]   Strength and sharp contact fracture of silicon [J].
Cook, RF .
JOURNAL OF MATERIALS SCIENCE, 2006, 41 (03) :841-872
[10]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935