Effect of different contents of organic-inorganic hybrid particles poly(methyl methacrylate)-ZrO2 on the properties of poly(vinylidene fluoride-hexafluoroprolene)-based composite gel polymer electrolytes

被引:43
作者
Wang, Zhiyan [1 ]
Miao, Chang [1 ]
Xiao, Wei [1 ]
Zhang, Yan [1 ]
Mei, Ping [1 ]
Yan, Xuemin [1 ]
Jiang, Yu [1 ]
Tian, Minglei [1 ]
机构
[1] Yangtze Univ, Coll Chem & Environm Engn, Jingzhou 434023, Peoples R China
基金
中国国家自然科学基金;
关键词
PMMA-ZrO2; P(VDF-HFP); Composite polymer electrolyte; In situ polymerization; Lithium ion battery; LITHIUM-ION BATTERIES; PERFORMANCE; CONDUCTIVITY; LIQUID; RAMAN;
D O I
10.1016/j.electacta.2018.04.040
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Poly(vinylidene fluoride-hexafluoroprolene) (P(VDF-HFP))-based composite polymer electrolyte (CPE) membranes doped with organic-inorganic hybrid particles poly(methylmethacrylate)-ZrO2 (PMMA-ZrO2) are fabricated by phase inversion, in which PMMA is firstly successfully grafted onto the surface of the homemade nano-ZrO2 particles via in situ polymerization confirmed by FT-IR. XRD and DSC patterns show that adding PMMA-ZrO2 into the polymer matrix can decrease the crystallinity of the CPE membranes and TG curves indicate the CPE membranes possess desirable thermal stability. It can be found that the CPE membrane presents a uniform surface with abundant interconnected micro-pores when the added amount of PMMA-ZrO2 increases to 5 wt % vs. polymer matrix, in which the ionic conductivity at room temperature and tensile strength can be up to 3.595 mS cm(-1) and 26.18 MPa, respectively. In particular, the CPE membrane shows the minimum deformation of about 8% after being exposed at 160 degrees C for 1 h, and the electrochemical working window of the assembled Li/CPE/SS cell can be stable at 5.1 V (vs Li/Li+) at room temperature. Moreover, the LiCoO2/CPE/Li coin cell can deliver a specific capacity of 114.5 mAh g(-1) with 79.13% capacity retention at 2.0 C after 110 cycles. The results suggest that the as-fabricated P(VDF-HFP)-based CPE doped with 5 wt % organic-inorganic hybrid particles PMMA-ZrO2 can be a promising polymer electrolyte for lithium ion batteries. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 30 条
[1]   Nanostructured inorganic-organic composites as a basis for solid polymer electrolytes with enhanced properties [J].
Bronstein, LM ;
Joo, C ;
Karlinsey, R ;
Ryder, A ;
Zwanziger, JW .
CHEMISTRY OF MATERIALS, 2001, 13 (10) :3678-3684
[2]   Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries [J].
Cao, Jiang ;
Wang, Li ;
Shang, Yuming ;
Fang, Mou ;
Deng, Lingfeng ;
Gao, Jian ;
Li, Jianjun ;
Chen, Hong ;
He, Xiangming .
ELECTROCHIMICA ACTA, 2013, 111 :674-679
[3]   Structure and electrochemical properties of composite polymer electrolyte based on poly vinylidene fluoride-hexafluoropropylene/titania-poly(methyl methacrylate) for lithium-ion batteries [J].
Cao, Jiang ;
Wang, Li ;
Fang, Mou ;
He, Xiangming ;
Li, Jianjun ;
Gao, Jian ;
Deng, Lingfeng ;
Wang, Jianlong ;
Chen, Hong .
JOURNAL OF POWER SOURCES, 2014, 246 :499-504
[4]   In situ prepared nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries [J].
Cao, Jiang ;
Wang, Li ;
He, Xiangming ;
Fang, Mou ;
Gao, Jian ;
Li, Jianjun ;
Deng, Lingfeng ;
Chen, Hong ;
Tian, Guangyu ;
Wang, Jianlong ;
Fan, Shoushan .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (19) :5955-5961
[5]   Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems [J].
Costa, C. M. ;
Gomez Ribelles, J. L. ;
Lanceros-Mendez, S. ;
Appetecchi, G. B. ;
Scrosati, B. .
JOURNAL OF POWER SOURCES, 2014, 245 :779-786
[6]   Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications [J].
Costa, Carlos M. ;
Silva, Maria M. ;
Lanceros-Mendez, S. .
RSC ADVANCES, 2013, 3 (29) :11404-11417
[7]   Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries [J].
Cui, Yanyan ;
Chai, Jingchao ;
Du, Huiping ;
Duan, Yulong ;
Xie, Guangwen ;
Liu, Zhihong ;
Cui, Guanglei .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (10) :8737-8741
[8]   Boosting the performance of LiTi2(PO4)3/C anode for aqueous lithium ion battery by Sn doping on Ti sites [J].
He, Zhangxing ;
Jiang, Yingqiao ;
Zhu, Jing ;
Li, Yuehua ;
Jiang, Zhen ;
Zhou, Huizhu ;
Meng, Wei ;
Wang, Ling ;
Dai, Lei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 731 :32-38
[9]   Poly(ethyl α-cyanoacrylate)-Based Artificial Solid Electrolyte Interphase Layer for Enhanced Interface Stability of Li Metal Anodes [J].
Hu, Zhenglin ;
Zhang, Shu ;
Dong, Shanmu ;
Li, Wenjun ;
Li, Hong ;
Cui, Guanglei ;
Chen, Liquan .
CHEMISTRY OF MATERIALS, 2017, 29 (11) :4682-4689
[10]   Polyhedral oligomeric silsesquioxane containing gel polymer electrolyte based on a PMMA matrix [J].
Huang, Yun ;
Gong, Sheng-Dong ;
Huang, Rui ;
Cao, Hai-Jun ;
Lin, Yuan-Hua ;
Yang, Man ;
Li, Xing .
RSC ADVANCES, 2015, 5 (57) :45908-45918