Existence for stationary mean-field games with congestion and quadratic Hamiltonians

被引:34
作者
Gomes, Diogo A. [1 ,2 ]
Mitake, Hiroyoshi [3 ]
机构
[1] King Abdullah Univ Sci & Technol, CSMSE Div, Thuwal 239556900, Saudi Arabia
[2] KAUST SRI Uncertainty Quantificat Ctr Computat Sc, Thuwal, Saudi Arabia
[3] Hiroshima Univ, Inst Sustainable Sci & Dev, Higashihiroshima 7398527, Japan
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2015年 / 22卷 / 06期
关键词
Mean-field games; Quadratic Hamiltonians; Congestion;
D O I
10.1007/s00030-015-0349-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here, we investigate the existence of solutions to a stationary mean-field game model introduced by J.-M. Lasry and P.-L. Lions. This model features a quadratic Hamiltonian and congestion effects. The fundamental difficulty of potential singular behavior is caused by congestion. Thanks to a new class of a priori bounds, combined with the continuation method, we prove the existence of smooth solutions in arbitrary dimensions.
引用
收藏
页码:1897 / 1910
页数:14
相关论文
共 22 条
[1]   Finite Difference Methods for Mean Field Games [J].
Achdou, Yves .
HAMILTON-JACOBI EQUATIONS: APPROXIMATIONS, NUMERICAL ANALYSIS AND APPLICATIONS, CETRARO, ITALY 2011, 2013, 2074 :1-47
[2]   SOME EXISTENCE THEOREMS FOR SEMI-LINEAR ELLIPTIC EQUATIONS [J].
AMANN, H ;
CRANDALL, MG .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1978, 27 (05) :779-790
[3]  
[Anonymous], 2011, PREPRINTS
[4]   LONG TIME AVERAGE OF MEAN FIELD GAMES [J].
Cardaliaguet, Pierre ;
Lasry, Jean-Michel ;
Lions, Pierre-Louis ;
Porretta, Alessio .
NETWORKS AND HETEROGENEOUS MEDIA, 2012, 7 (02) :279-301
[5]  
Dieudonne J., 1969, Pure and Applied Mathematics, V10-I, pxviii+387
[6]  
Gomes D. A., 2013, ARXIV13116684
[7]  
Gomes D. A., 2014, COMMUN PART IN PRESS
[8]  
Gomes D, 2014, T AM MATH SOC, V366, P903
[9]   MATHER MEASURES SELECTED BY AN APPROXIMATION SCHEME [J].
Gomes, Diogo ;
Iturriaga, Renato ;
Sanchez-Morgado, Hector ;
Yu, Yifeng .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (10) :3591-3601
[10]   Mean Field Games Models-A Brief Survey [J].
Gomes, Diogo A. ;
Saude, Joao .
DYNAMIC GAMES AND APPLICATIONS, 2014, 4 (02) :110-154