Parameterized maximum path coloring

被引:2
|
作者
Lampis, Michael [1 ]
机构
[1] CUNY, Grad Ctr, New York, NY 10016 USA
关键词
Path coloring; EPT graphs; Parameterized complexity; COMPLEXITY; EDGE;
D O I
10.1016/j.tcs.2013.01.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the well-known MAX PATH COLORING problem from a parameterized point of view, focusing on trees and low-treewidth networks. We observe the existence of a variety of reasonable parameters for the problem, such as the maximum degree and treewidth of the network graph, the number of available colors and the number of requests one seeks to satisfy or reject. In an effort to understand the impact of each of these parameters on the problem's complexity we study various parameterized versions of the problem deriving fixed-parameter tractability and hardness results both for undirected and bi-directed graphs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 50 条
  • [21] The complexity of path coloring and call scheduling
    Erlebach, T
    Jansen, K
    THEORETICAL COMPUTER SCIENCE, 2001, 255 (1-2) : 33 - 50
  • [22] On the Parameterized Complexity of Maximum Degree Contraction Problem
    Saket Saurabh
    Prafullkumar Tale
    Algorithmica, 2022, 84 : 405 - 435
  • [23] On the Parameterized Complexity of Maximum Degree Contraction Problem
    Saurabh, Saket
    Tale, Prafullkumar
    ALGORITHMICA, 2022, 84 (02) : 405 - 435
  • [24] The permutation-path coloring problem on trees
    Corteel, S
    Valencia-Pabon, M
    Gardy, D
    Barth, D
    Denise, A
    THEORETICAL COMPUTER SCIENCE, 2003, 297 (1-3) : 119 - 143
  • [25] A Refined Analysis of Online Path Coloring in Trees
    Chauhan, Astha
    Narayanaswamy, N. S.
    APPROXIMATION AND ONLINE ALGORITHMS (WAOA 2016), 2017, 10138 : 142 - 154
  • [26] Maximum common induced subgraph parameterized by vertex cover
    Abu-Khzam, Faisal N.
    INFORMATION PROCESSING LETTERS, 2014, 114 (03) : 99 - 103
  • [27] A Parameterized Study of Maximum Generalized Pattern Matching Problems
    Ordyniak, Sebastian
    Popa, Alexandru
    PARAMETERIZED AND EXACT COMPUTATION, IPEC 2014, 2014, 8894 : 270 - 281
  • [28] MAXIMUM MINIMAL VERTEX COVER PARAMETERIZED BY VERTEX COVER
    Zehavi, Meirav
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (04) : 2440 - 2456
  • [29] Parameterized and Approximation Algorithms for the Maximum Bimodal Subgraph Problem
    Didimo, Walter
    Fomin, Fedor V.
    Golovach, Petr A.
    Inamdar, Tanmay
    Kobourov, Stephen
    Sieper, Marie Diana
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT II, 2023, 14466 : 189 - 202
  • [30] A Parameterized Study of Maximum Generalized Pattern Matching Problems
    Sebastian Ordyniak
    Alexandru Popa
    Algorithmica, 2016, 75 : 1 - 26