Parameterized maximum path coloring

被引:2
|
作者
Lampis, Michael [1 ]
机构
[1] CUNY, Grad Ctr, New York, NY 10016 USA
关键词
Path coloring; EPT graphs; Parameterized complexity; COMPLEXITY; EDGE;
D O I
10.1016/j.tcs.2013.01.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the well-known MAX PATH COLORING problem from a parameterized point of view, focusing on trees and low-treewidth networks. We observe the existence of a variety of reasonable parameters for the problem, such as the maximum degree and treewidth of the network graph, the number of available colors and the number of requests one seeks to satisfy or reject. In an effort to understand the impact of each of these parameters on the problem's complexity we study various parameterized versions of the problem deriving fixed-parameter tractability and hardness results both for undirected and bi-directed graphs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 50 条
  • [1] PARAMETERIZED PRE-COLORING EXTENSION AND LIST COLORING PROBLEMS
    Gutin, Gregory
    Majumdar, Diptapriyo
    Ordyniak, Sebastian
    Wahlstrom, Magnus
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (01) : 575 - 596
  • [2] Parameterized (Approximate) Defective Coloring
    Belmonte, Remy
    Lampis, Michael
    Mitsou, Valia
    35TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2018), 2018, 96
  • [3] Parameterized Complexity of Equitable Coloring
    Gomes, Guilherme de C. M.
    Lima, Carlos V. G. C.
    dos Santos, Vinicius F.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (01)
  • [4] PARAMETERIZED (APPROXIMATE) DEFECTIVE COLORING
    Belmonte, Remy
    Lampis, Michael
    Mitsou, Valia
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (02) : 1084 - 1106
  • [5] Parameterized Pre-Coloring Extension and List Coloring Problems
    Gutin, Gregory
    Majumdar, Diptapriyo
    Ordyniak, Sebastian
    Wahlstrom, Magnus
    37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [6] Parameterized complexity of happy coloring problems
    Agrawal, Akanksha
    Aravind, N. R.
    Kalyanasundaram, Subrahmanyam
    Kare, Anjeneya Swami
    Lauri, Juho
    Misra, Neeldhara
    Reddy, I. Vinod
    THEORETICAL COMPUTER SCIENCE, 2020, 835 : 58 - 81
  • [7] Parameterized coloring problems on chordal graphs
    Marx, D
    THEORETICAL COMPUTER SCIENCE, 2006, 351 (03) : 407 - 424
  • [8] Parameterized Complexity of Synchronization and Road Coloring
    Vorel, Vojtech
    Roman, Adam
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01) : 283 - 305
  • [9] Parameterized and exact algorithms for class domination coloring
    Krithika, R.
    Rai, Ashutosh
    Saurabh, Saket
    Tale, Prafullkumar
    DISCRETE APPLIED MATHEMATICS, 2021, 291 : 286 - 299
  • [10] Incremental list coloring of graphs, parameterized by conservation
    Hartung, Sepp
    Niedermeier, Rolf
    THEORETICAL COMPUTER SCIENCE, 2013, 494 : 86 - 98