Adaptive Unscented Kalman Filter for Target Tracking with Unknown Time-Varying Noise Covariance

被引:39
|
作者
Ge, Baoshuang [1 ]
Zhang, Hai [1 ,2 ]
Jiang, Liuyang [1 ]
Li, Zheng [1 ]
Butt, Maaz Mohammed [1 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, 37 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Beihang Univ, Sci & Technol Aircraft Control Lab, 37 Xueyuan Rd, Beijing 100083, Peoples R China
关键词
adaptive filtering; data fusion; target tracking; non-linear filtering; unknown noise statistics; UKF;
D O I
10.3390/s19061371
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The unscented Kalman filter (UKF) is widely used to address the nonlinear problems in target tracking. However, this standard UKF shows unstable performance whenever the noise covariance mismatches. Furthermore, in consideration of the deficiencies of the current adaptive UKF algorithm, this paper proposes a new adaptive UKF scheme for the time-varying noise covariance problems. First of all, the cross-correlation between the innovation and residual sequences is given and proven. On this basis, a linear matrix equation deduced from the innovation and residual sequences is applied to resolve the process noise covariance in real time. Using the redundant measurements, an improved measurement-based adaptive Kalman filtering algorithm is applied to estimate the measurement noise covariance, which is entirely immune to the state estimation. The results of the simulation indicate that under the condition of time-varying noise covariances, the proposed adaptive UKF outperforms the standard UKF and the current adaptive UKF algorithm, hence improving tracking accuracy and stability.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Adaptive Incremental Kalman Predictor with Unknown Time-varying Parameters
    Zhou, Han
    Yan, Guangming
    Sun, Xiaojun
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 4789 - 4794
  • [22] An adaptive-covariance-rank algorithm for the unscented Kalman filter
    Padilla, Lauren E.
    Rowley, Clarence W.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 1324 - 1329
  • [23] Iterated unscented Kalman filter for passive target tracking
    Zhan, Ronghui
    Wan, Jianwei
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2007, 43 (03) : 1155 - 1163
  • [24] Application of Unscented Kalman Filter for Flying Target Tracking
    Yan, Honglei
    Huang, Genghua
    Wang, Haiwei
    Shu, Rong
    2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CLOUD COMPUTING (ISCC), 2014, : 61 - 66
  • [25] Tracking a ballistic target with unscented iterative Kalman filter
    Zhang, SC
    Liu, SH
    Hu, GD
    IECON 2005: THIRTY-FIRST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, 2005, : 107 - 111
  • [26] Adaptive Estimation of Noise Covariance Matrices in Unscented Kalman Filter for Multiclass Traffic Flow Model
    Ngoduy, Dong
    Sumalee, Agachai
    TRANSPORTATION RESEARCH RECORD, 2010, (2188) : 119 - 130
  • [27] The AKRON-Kalman Filter for Tracking Time-Varying Networks
    Carluccio, Victor
    Bouaynaya, Nidhal
    Ditzler, Gregory
    Fathallah-Shaykh, Hassan M.
    2017 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2017, : 313 - 316
  • [28] Stability of Kalman filter for time-varying systems with correlated noise
    Li, RS
    Chu, DS
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 1997, 11 (06) : 475 - 487
  • [29] Robust Adaptive Kalman Filtering For Target Tracking With Unknown Observation Noise
    Li, Yongchen
    Li, Jianxun
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 2075 - 2080
  • [30] Adaptive Unscented Kalman Filter for Polarization Stake Tracking
    Li, Yuanjian
    Hu, Shaohua
    Tang, Bi
    Zhang, Jing
    Qiu, Kun
    2019 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2019,