Low temperature sugar cane bagasse pyrolysis for the production of high purity hydrogen through steam reforming and CO2 capture

被引:9
|
作者
Lopez Ortiz, A. [1 ]
Neri Segura, F. J. [1 ]
Sandoval Jabalera, R. [2 ]
Marques da Silva Paula, M. [3 ]
Arias del Campo, E. [1 ]
Salinas Gutierrez, J. [1 ]
Escobedo Bretado, M. A. [1 ,4 ]
Collins-Martinez, V. [1 ]
机构
[1] Ctr Invest Mat Avanzados SC, Dept Mat Nanoestruct, Chihuahua 31109, Chih, Mexico
[2] Univ Autonoma Chihuahua, Fac Ingn, Chihuahua 31240, Chih, Mexico
[3] Univ Extremo Sul Catarinense, PPGCS, Lab Sintese Complexos Multifunc, BR-88806000 Criciuma, Brazil
[4] Univ Juarez Estado Durango, Fac Ciencias Quim, Durango 34120, Dgo, Mexico
关键词
Hydrogen production; Bagasse pyrolysis; Steam reforming; CO2; capture; VACUUM PYROLYSIS; BIOMASS; OIL; DEVOLATILIZATION; ENERGY; YIELD; SLOW; COAL;
D O I
10.1016/j.ijhydene.2013.06.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biomass pyrolysis offers a fast route to produce elevated yields towards highly valued liquid products. This research aims the determination of optimal experimental conditions for a slow and low temperature pyrolysis to produce the highest yield towards condensable (CVM) and non-condensable (NCVM) volatile matter from Mexican cane bagasse and to quantify and characterize the compounds that constitute CVM and NCVM obtained. Results indicate that yield towards volatiles is strongly dependent on temperature. The highest yield was achieved at temperatures greater than 500 degrees C at a heating rate of 10 degrees C/min, residence time of 60 min and a particle size between of 420 and 840 gm. Product quantification under isothermal conditions determined that at 550 degrees C the NCVM, CVM and solid residue was of 26, 57 and 16%, respectively. Preliminary thermodynamic analysis of steam reforming and CO2 absorption reactions using one of the main CVM products resulted in a potential high hydrogen production yield. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12580 / 12588
页数:9
相关论文
共 50 条
  • [41] Thermodynamic analysis of hydrogen production via glycerol steam reforming with CO2 adsorption
    Li, Yunhua
    Wang, Wenju
    Chen, Binghui
    Cao, Yingyu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (15) : 7768 - 7777
  • [42] Hydrogen production through catalytic low-temperature bio-ethanol steam reforming
    Vincenzo Palma
    Filomena Castaldo
    Paolo Ciambelli
    Gaetano Iaquaniello
    Clean Technologies and Environmental Policy, 2012, 14 : 973 - 987
  • [43] Thermodynamic Analysis of Glycerol Steam Reforming using Calcium Oxide and Iron Oxide for High-Purity Hydrogen Production
    Wei, Ligang
    Li, Kunlan
    Ma, Yingchong
    INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2012, 10
  • [44] Co-production system of hydrogen and electricity based on coal partial gasification with CO2 capture
    Xu, Yujie
    Zang, Guiyan
    Chen, Haisheng
    Dou, Binlin
    Tan, Chunqing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (16) : 11805 - 11814
  • [45] Intensified chemical looping reforming processes with in-situ CO2 capture for high purity H2 production from non-fuel grade bioethanol
    Alam, Shadab
    Lingaiah, N.
    Soujanya, Y.
    Sumana, C.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2022, 171
  • [46] Biomass gasification integrated with CO2 capture processes for high-purity hydrogen production: Process performance and energy analysis
    Detchusananard, Thanaphorn
    Im-orb, Karittha
    Ponpesh, Pimporn
    Arpornwichanop, Amornchai
    ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 1560 - 1572
  • [47] Co-production of hydrogen and electricity with CO2 capture
    Davison, John
    Arienti, Silvio
    Cotone, Paolo
    Mancuso, Luca
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2010, 4 (02) : 125 - 130
  • [48] Hydrogen production through catalytic low-temperature bio-ethanol steam reforming
    Palma, Vincenzo
    Castaldo, Filomena
    Ciambelli, Paolo
    Iaquaniello, Gaetano
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2012, 14 (05) : 973 - 987
  • [49] Numerical analysis of multiphase flow in chemical looping reforming process for hydrogen production and CO2 capture
    Chavda, Akash
    Mehta, Pranav
    Harichandan, Atal
    EXPERIMENTAL AND COMPUTATIONAL MULTIPHASE FLOW, 2022, 4 (04) : 360 - 376
  • [50] Calcium enhanced hydrogen production with CO2 capture
    Harrison, Douglas P.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 675 - 681