Low temperature sugar cane bagasse pyrolysis for the production of high purity hydrogen through steam reforming and CO2 capture

被引:9
|
作者
Lopez Ortiz, A. [1 ]
Neri Segura, F. J. [1 ]
Sandoval Jabalera, R. [2 ]
Marques da Silva Paula, M. [3 ]
Arias del Campo, E. [1 ]
Salinas Gutierrez, J. [1 ]
Escobedo Bretado, M. A. [1 ,4 ]
Collins-Martinez, V. [1 ]
机构
[1] Ctr Invest Mat Avanzados SC, Dept Mat Nanoestruct, Chihuahua 31109, Chih, Mexico
[2] Univ Autonoma Chihuahua, Fac Ingn, Chihuahua 31240, Chih, Mexico
[3] Univ Extremo Sul Catarinense, PPGCS, Lab Sintese Complexos Multifunc, BR-88806000 Criciuma, Brazil
[4] Univ Juarez Estado Durango, Fac Ciencias Quim, Durango 34120, Dgo, Mexico
关键词
Hydrogen production; Bagasse pyrolysis; Steam reforming; CO2; capture; VACUUM PYROLYSIS; BIOMASS; OIL; DEVOLATILIZATION; ENERGY; YIELD; SLOW; COAL;
D O I
10.1016/j.ijhydene.2013.06.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biomass pyrolysis offers a fast route to produce elevated yields towards highly valued liquid products. This research aims the determination of optimal experimental conditions for a slow and low temperature pyrolysis to produce the highest yield towards condensable (CVM) and non-condensable (NCVM) volatile matter from Mexican cane bagasse and to quantify and characterize the compounds that constitute CVM and NCVM obtained. Results indicate that yield towards volatiles is strongly dependent on temperature. The highest yield was achieved at temperatures greater than 500 degrees C at a heating rate of 10 degrees C/min, residence time of 60 min and a particle size between of 420 and 840 gm. Product quantification under isothermal conditions determined that at 550 degrees C the NCVM, CVM and solid residue was of 26, 57 and 16%, respectively. Preliminary thermodynamic analysis of steam reforming and CO2 absorption reactions using one of the main CVM products resulted in a potential high hydrogen production yield. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:12580 / 12588
页数:9
相关论文
共 50 条
  • [1] Low Temperature Applications for CO2 Capture in Hydrogen Production
    Kim, Donghoi
    Berstad, David
    Anantharaman, Rahul
    Straus, Julian
    Peters, Thijs A.
    Gundersen, Truls
    30TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A-C, 2020, 48 : 445 - 450
  • [2] Incorporation of hydrogen production process in a sugar cane industry: Steam reforming of ethanol
    Silveira, Jose Luz
    Martinelli, Valdisley Jose
    Vane, Lucas Fachini
    Freire Junior, Jose Celso
    Zanzi Vigouroux, Rolando A.
    Tuna, Celso Eduardo
    Lamas, Wendell de Queiroz
    Silva Paulino, Regina Francielle
    APPLIED THERMAL ENGINEERING, 2014, 71 (01) : 94 - 103
  • [3] Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production
    Soltani, R.
    Rosen, M. A.
    Dincer, I.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (35) : 20266 - 20275
  • [4] Hydrogen production from steam reforming of simulated bio-oil over Ce-Ni/Co catalyst with in continuous CO2 capture
    Xie, Huaqing
    Yu, Qingbo
    Wei, Mengqi
    Duan, Wenjun
    Yao, Xin
    Qin, Qin
    Zuo, Zongliang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (03) : 1420 - 1428
  • [5] Efficient hydrogen production with CO2 capture using gas switching reforming
    Nazir, Shareq Mohd
    Cloete, Jan Hendrik
    Cloete, Schalk
    Amini, Shahriar
    ENERGY, 2019, 185 : 372 - 385
  • [6] Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture
    Li, Xiao
    Yang, Lingzhi
    Hao, Yong
    ENERGIES, 2023, 16 (20)
  • [7] Blue, green, and turquoise pathways for minimizing hydrogen production costs from steam methane reforming with CO2 capture
    Pruvost, Florian
    Cloete, Schalk
    del Pozo, Carlos Arnaiz
    Zaabout, Abdelghafour
    ENERGY CONVERSION AND MANAGEMENT, 2022, 274
  • [8] Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture
    Antzara, Andy
    Heracleous, Eleni
    Bukur, Dragomir B.
    Lemonidou, Angeliki A.
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 6576 - 6589
  • [9] An approach to the utilisation of CO2 as impregnating agent in steam pretreatment of sugar cane bagasse and leaves for ethanol production
    Ferreira-Leitao, Viridiana
    Perrone, Clarissa Cruz
    Rodrigues, Joice
    Franke, Ana Paula Machado
    Macrelli, Stefano
    Zacchi, Guido
    BIOTECHNOLOGY FOR BIOFUELS, 2010, 3
  • [10] Hydrogen production with CO2 capture
    Voldsund, Mari
    Jordal, Kristin
    Anantharaman, Rahul
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (09) : 4969 - 4992