Simulation-based Optimization of Camera Placement in the Context of Industrial Pose Estimation

被引:4
作者
Jorgensen, Troels B. [1 ]
Iversen, Thorbjorn M. [1 ]
Lindvig, Anders P. [1 ]
Schlette, Christian [1 ]
Kraft, Dirk [1 ]
Savarimuthu, Thiusius R. [1 ]
Rossmann, Juergen [2 ]
Krueger, Norbert [1 ]
机构
[1] Univ Southern Denmark, Mcersk McKinney Moller Inst, DK-5230 Odense M, Denmark
[2] Rhein Westfal TH Aachen, Inst Man Machine Interact, D-52074 Aachen, Germany
来源
PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2018), VOL 5: VISAPP | 2018年
关键词
Pose Estimation; Simulation; Optimization; OBJECT RECOGNITION;
D O I
10.5220/0006553005240533
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we optimize the placement of a camera in simulation in order to achieve a high success rate for a pose estimation problem. This is achieved by simulating 2D images from a stereo camera in a virtual scene. The stereo images are then used to generate 3D point clouds based on two different methods, namely a single shot stereo matching approach and a multi shot approach using phase shift patterns. After a point cloud is generated, we use a RANSAC-based pose estimation algorithm, which relies on feature matching of local 3D descriptors. The object we pose estimate is a tray containing items to be grasped by a robot. The pose estimation is done for different positions of the tray and with different item configuration in the tray, in order to determine the success rate of the pose estimation algorithm for a specific camera placement. Then the camera placement is varied according to different optimization algorithms in order to maximize the success rate. Finally, we evaluate the simulation in a real world scene, to determine whether the optimal camera position found in simulation matches the real scenario.
引用
收藏
页码:524 / 533
页数:10
相关论文
共 24 条
[1]   Tutorial Point Cloud Library Three-Dimensional Object Recognition and 6 DOF Pose Estimation [J].
Aldoma, Aitor ;
Marton, Zoltan-Csaba ;
Tombari, Federico ;
Wohlkinger, Walter ;
Potthast, Christian ;
Zeisl, Bernhard ;
Rusu, Radu Bogdan ;
Gedikli, Suat ;
Vincze, Markus .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2012, 19 (03) :80-91
[2]  
[Anonymous], 2015, RBFOPT OPEN SOURCE L
[3]  
Buch AG, 2013, IEEE INT CONF ROBOT, P2080, DOI 10.1109/ICRA.2013.6630856
[4]   Active vision in robotic systems: A survey of recent developments [J].
Chen, Shengyong ;
Li, Youfu ;
Kwok, Ngai Ming .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (11) :1343-1377
[5]   Using a three-dimensional optical simulation to investigate uncertainty in image-based dimensional measurements [J].
Dong, Yue ;
Hutchens, Thomas ;
Mullany, Brigid ;
Morse, Edward ;
Davies, Angela .
OPTICAL ENGINEERING, 2014, 53 (09)
[6]  
Everitt C., 2001, CISC VIS NETW IND GL, P4
[7]  
Geiger A, 2011, LECT NOTES COMPUT SC, V6492, P25, DOI 10.1007/978-3-642-19315-6_3
[8]   Comparative Evaluation of 3D Pose Estimation of Industrial Objects in RGB Pointclouds [J].
Grossmann, Bjarne ;
Siam, Mennatullah ;
Kruger, Volker .
COMPUTER VISION SYSTEMS (ICVS 2015), 2015, 9163 :329-342
[9]   TEMPORAL PHASE-UNWRAPPING ALGORITHM FOR AUTOMATED INTERFEROGRAM ANALYSIS [J].
HUNTLEY, JM ;
SALDNER, H .
APPLIED OPTICS, 1993, 32 (17) :3047-3052
[10]  
Irgenfried S., 2011, P 2 INT C COMP MOD S, P59