Efficient Acquisition Rules for Model-Based Approximate Bayesian Computation

被引:33
作者
Jarvenpaa, Marko [1 ]
Gutmann, Michael U. [2 ]
Pleska, Arijus [1 ]
Vehtari, Aki [1 ]
Marttinen, Pekka [1 ]
机构
[1] Aalto Univ, Dept Comp Sci, Helsinki Inst Informat Technol HIIT, Helsinki, Finland
[2] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland
来源
BAYESIAN ANALYSIS | 2019年 / 14卷 / 02期
基金
芬兰科学院;
关键词
approximate Bayesian computation; intractable likelihood; Gaussian processes; Bayesian optimisation; sequential experiment design; MONTE-CARLO; STATISTICAL-INFERENCE; REDUCTION;
D O I
10.1214/18-BA1121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Approximate Bayesian computation (ABC) is a method for Bayesian inference when the likelihood is unavailable but simulating from the model is possible. However, many ABC algorithms require a large number of simulations, which can be costly. To reduce the computational cost, Bayesian optimisation (BO) and surrogate models such as Gaussian processes have been proposed. Bayesian optimisation enables one to intelligently decide where to evaluate the model next but common BO strategies are not designed for the goal of estimating the posterior distribution. Our paper addresses this gap in the literature. We propose to compute the uncertainty in the ABC posterior density, which is due to a lack of simulations to estimate this quantity accurately, and define a loss function that measures this uncertainty. We then propose to select the next evaluation location to minimise the expected loss. Experiments show that the proposed method often produces the most accurate approximations as compared to common BO strategies.
引用
收藏
页码:595 / 622
页数:28
相关论文
共 56 条
  • [21] Hennig P, 2012, J MACH LEARN RES, V13, P1809
  • [22] Hernndez-Lobato J. M., 2014, ADV NEURAL INFORM PR, V28, P1
  • [23] Jarvenpaa M, 2018, BAYESIAN ANAL, P598, DOI [10.1214/18-BA1121SUPP, DOI 10.1214/18-BA1121SUPP]
  • [24] Jarvenpaa M, 2017, GAUSSIAN PROCESS MOD
  • [25] Kandasamy K, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P3605
  • [26] Adaptive approximate Bayesian computation for complex models
    Lenormand, Maxime
    Jabot, Franck
    Deffuant, Guillaume
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2777 - 2796
  • [27] Lintusaari J, 2018, J MACHINE LEARNING R, P609
  • [28] Fundamentals and Recent Developments in Approximate Bayesian Computation
    Lintusaari, Jarno
    Gutmann, Michael U.
    Dutta, Ritabrata
    Kaski, Samuel
    Corander, Jukka
    [J]. SYSTEMATIC BIOLOGY, 2017, 66 (01) : E66 - E82
  • [29] Approximate Bayesian computational methods
    Marin, Jean-Michel
    Pudlo, Pierre
    Robert, Christian P.
    Ryder, Robin J.
    [J]. STATISTICS AND COMPUTING, 2012, 22 (06) : 1167 - 1180
  • [30] Markov chain Monte Carlo without likelihoods
    Marjoram, P
    Molitor, J
    Plagnol, V
    Tavaré, S
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (26) : 15324 - 15328