Nanostructured Bi2Te3 Prepared by a Straightforward Arc-Melting Method

被引:27
作者
Gharsallah, M. [1 ,2 ]
Serrano-Sanchez, F. [1 ]
Bermudez, J. [1 ]
Nemes, N. M. [1 ]
Martinez, J. L. [1 ]
Elhalouani, F. [2 ]
Alonso, J. A. [1 ]
机构
[1] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
[2] Sfax Univ, Natl Sch Engn, Sfax Bpw 3038, Tunisia
来源
NANOSCALE RESEARCH LETTERS | 2016年 / 11卷
关键词
Thermoelectrics; Nanostructuration; Lattice thermal conductivity; Thermopower; Neutron powder diffraction; ZT figure of merit; THERMOELECTRICITY;
D O I
10.1186/s11671-016-1345-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thermoelectric materials constitute an alternative source of sustainable energy, harvested from waste heat. Bi2Te3 is the most utilized thermoelectric alloy. We show that it can be readily prepared in nanostructured form by arc-melting synthesis, yielding mechanically robust pellets of highly oriented polycrystals. This material has been characterized by neutron powder diffraction (NPD), scanning electron microscopy (SEM), and electronic and thermal transport measurements. A microscopic analysis from NPD data demonstrates a near-perfect stoichiometry of Bi2Te3 and a fair amount of anharmonicity of the chemical bonds. The as-grown material presents a metallic behavior, showing a record-low resistivity at 320 K of 2 mu Omega m, which is advantageous for its performance as a thermoelectric material. SEM analysis shows a stacking of nanosized sheets, each of them presumably single-crystalline, with large surfaces perpendicular to the c crystallographic axis. This nanostructuration notably affects the thermoelectric properties, involving many surface boundaries that are responsible for large phonon scattering factors, yielding a thermal conductivity as low as 1.2 W m(-1) K-1 around room temperature.
引用
收藏
页数:7
相关论文
共 27 条
[1]   Rietveld refinement of the semiconducting system Bi2-xFexTe3 from X-ray powder diffraction [J].
Adam, Alia .
MATERIALS RESEARCH BULLETIN, 2007, 42 (12) :1986-1994
[2]   Anisotropic magnetotransport in SrTiO3 surface electron gases generated by Ar+ irradiation [J].
Bruno, F. Y. ;
Tornos, J. ;
Gutierrez del Olmo, M. ;
Sanchez Santolino, G. ;
Nemes, N. M. ;
Garcia-Hernandez, M. ;
Mendez, B. ;
Piqueras, J. ;
Antorrena, G. ;
Morellon, L. ;
De Teresa, J. M. ;
Clement, M. ;
Iborra, E. ;
Leon, C. ;
Santamaria, J. .
PHYSICAL REVIEW B, 2011, 83 (24)
[3]   Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure [J].
Cao, Y. Q. ;
Zhao, X. B. ;
Zhu, T. J. ;
Zhang, X. B. ;
Tu, J. P. .
APPLIED PHYSICS LETTERS, 2008, 92 (14)
[4]   Recent developments in thermoelectric materials [J].
Chen, G ;
Dresselhaus, MS ;
Dresselhaus, G ;
Fleurial, JP ;
Caillat, T .
INTERNATIONAL MATERIALS REVIEWS, 2003, 48 (01) :45-66
[5]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[6]  
Fedrov M.I., 1995, CRC HDB THERMOELECTR, P321
[7]   Probing the thermoelectric transport properties of n-type Bi2Te3 close to the limit of constitutional undercooling [J].
Feng Song-Ke ;
Li Shuang-Ming ;
Fu Heng-Zhi .
CHINESE PHYSICS B, 2014, 23 (11)
[8]  
Goldsmid HJ, 2002, BR J APPL PHYS, V5, P458, DOI [10.1088/0508-3443/5/12/513, DOI 10.1088/0508-3443/5/12/513]
[9]  
Heikes R.R., 1961, Thermoelectricity: Science and Engineering (Interscience)
[10]   Nanostructured Thermoelectrics: The New Paradigm? [J].
Kanatzidis, Mercouri G. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :648-659