A comparative study of male pelvis CT auto-segmentation and its clinical utility

被引:0
|
作者
Wood, J. [1 ]
Aznar, M. [2 ]
Whitehurst, P. [1 ]
机构
[1] Christie NHS Fdn Trust, Christie Med Phys & Engn, Manchester, Lancs, England
[2] Univ Manchester, Radiotherapy Related Res, Manchester, Lancs, England
关键词
D O I
10.1016/S0167-8140(19)32282-0
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
EP-1862
引用
收藏
页码:S1011 / S1012
页数:2
相关论文
共 50 条
  • [1] Improved Auto-Segmentation for CT Male Pelvis: Comparison of Deep Learning to Traditional Atlas Segmentation Methods
    Halley, C.
    Wan, H.
    Kruzer, A.
    Pittock, D.
    Darkow, D.
    Butler, M.
    Cole, N.
    Bending, M.
    Jacobs, P.
    Nelson, A. S.
    MEDICAL PHYSICS, 2020, 47 (06) : E627 - E627
  • [2] Incremental retraining, clinical implementation, and acceptance rate of deep learning auto-segmentation for male pelvis in a multiuser environment
    Duan, Jingwei
    Vargas, Carlos E. E.
    Yu, Nathan Y. Y.
    Laughlin, Brady S. S.
    Toesca, Diego Santos
    Keole, Sameer
    Rwigema, Jean Claude M.
    Wong, William W. W.
    Schild, Steven E. E.
    Feng, Xue
    Chen, Quan
    Rong, Yi
    MEDICAL PHYSICS, 2023, 50 (07) : 4079 - 4091
  • [3] Pelvic Nodal Auto-Segmentation Using a Deep Image to Image Network (DI2IN) Auto-Segmentation Algorithm: Comparing Male vs. Female Pelvis
    Rayn, K.
    Gokhroo, G.
    Gupta, V.
    Chaudhari, S.
    Clark, R.
    Magliari, A.
    Beriwal, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E710 - E711
  • [4] Sensitivity of Auto-Segmentation to CT Reconstruction Algorithms
    Mittelstaedt, D.
    Klahr, P.
    Nejad-Davarani, S.
    Schulz, H.
    Goshen, L.
    Morris, E.
    Glide-Hurst, C.
    MEDICAL PHYSICS, 2017, 44 (06) : 3302 - 3302
  • [5] Impact of CT reconstruction algorithm on auto-segmentation performance
    Miller, Claudia
    Mittelstaedt, Daniel
    Black, Noel
    Klahr, Paul
    Nejad-Davarani, Siamak
    Schulz, Heinrich
    Goshen, Liran
    Han, Xiaoxia
    Ghanem, Ahmed, I
    Morris, Eric D.
    Glide-Hurst, Carri
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2019, 20 (09): : 95 - 103
  • [6] Clinical evaluation of deep learning for auto-segmentation of CT images in RT for lung cancer
    Johnston, N.
    De Rycke, J.
    Lievens, Y.
    Vanderstraeten, B.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S1371 - S1372
  • [7] Clinical evaluation of an auto-segmentation toolbox for breast CTV
    Simoes, R.
    Rozendaal, R.
    Trinks, J.
    Kalisvaart, R.
    Van der Heide, U.
    Remeijer, P.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S1168 - S1169
  • [8] Clinical Implementation of AI-Based Auto-Segmentation
    Kisling, Kelly
    Yang, J.
    Sharp, G.
    Elguindi, S.
    MEDICAL PHYSICS, 2022, 49 (06) : E487 - E488
  • [9] Quality check of auto-segmentation during clinical use
    Janssen, Tomas
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S86 - S86
  • [10] Evaluation of segmentation methods on head and neck CT: Auto-segmentation challenge 2015
    Raudaschl, Patrik F.
    Zaffino, Paolo
    Sharp, Gregory C.
    Spadea, Maria Francesca
    Chen, Antong
    Dawant, Benoit M.
    Albrecht, Thomas
    Gass, Tobias
    Langguth, Christoph
    Luthi, Marcel
    Jung, Florian
    Knapp, Oliver
    Wesarg, Stefan
    Mannion-Haworth, Richard
    Bowes, Mike
    Ashman, Annaliese
    Guillard, Gwenael
    Brett, Alan
    Vincent, Graham
    Orbes-Arteaga, Mauricio
    Cardenas-Pena, David
    Castellanos-Dominguez, German
    Aghdasi, Nava
    Li, Yangming
    Berens, Angelique
    Moe, Kris
    Hannaford, Blake
    Schubert, Rainer
    Fritscher, Karl D.
    MEDICAL PHYSICS, 2017, 44 (05) : 2020 - 2036