Tuning anionic redox activity to boost high-performance sodium-storage in low-cost Na0.67Fe0.5Mn0.5O2 cathode

被引:31
作者
Jiao, Jianyue [1 ]
Wu, Kang [2 ]
Li, Na [1 ]
Zhao, Enyue [2 ]
Yin, Wen [3 ]
Hu, Zhongbo [1 ]
Wang, Fangwei [2 ,3 ,4 ]
Zhao, Jinkui [2 ,4 ]
Xiao, Xiaoling [1 ]
机构
[1] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[2] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[3] Spallat Neutron Source Sci Ctr, Dongguan 523803, Guangdong, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2022年 / 73卷
基金
美国国家科学基金会;
关键词
Na-ion battery; P2-Na0.67Fe0.5Mn0.5O2; Anionic redox reaction; Surface Ti doping; HIGH-RATE-CAPABILITY; STRUCTURAL STABILITY; LAYERED OXIDES; ION STORAGE; LITHIUM; P2-TYPE; SUBSTITUTION; ELECTRODES;
D O I
10.1016/j.jechem.2022.04.042
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Na-based layered iron-manganese oxide Na0.67Fe0.5Mn0.5O2 containing only low-cost elements is a promising cathode for Na-ion batteries used in large-scale energy storage systems. However, the poor cycle stability restricts its practical application. The capacity decay of Na0.67Fe0.5Mn0.5O2 mainly originates from the irreversible anionic redox reaction charge compensation due to the high-level hybridization between oxygen and iron. Herein, we rationally design a surface Ti doping strategy to tune the anionic redox reaction activity of Na0.67Fe0.5Mn0.5O2 and improve its Na-storage properties. The doped Ti ions not only enlarge the Na migration spacing layer but also improve the structure stability thanks to the strong Ti-O bond. More importantly, the d0-shell electronic structure of Ti4+ can suppress the charge transfer from the oxidized anions to cations, thus reducing the anionic redox reaction activity and enhancing the reversibility of charge compensation. The modified Na0.67Fe0.5Mn0.5O2 cathode shows a reversible capacity of 198 mA h g(-1) and an increased capacity retention from 15% to 73% after about 1 month of cycling. Meanwhile, a superior Na-ion diffusion kinetics and rate capability are also observed. This work advances the commercialization process of Na-based layered iron-manganese oxide cathodes; on the other hand, the proposed modification strategy paves the way for the design of high-performance electrode materials relying on anionic redox reactions. (C) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:214 / 222
页数:9
相关论文
共 52 条
[1]   Improved battery performance of silicon modified Na0.67Fe0.5Mn0.5O2 and its structural and electrochemical properties: An investigation of infrared thermal imaging [J].
Altin, S. ;
Altundag, E. ;
Altin, E. ;
Altundag, S. .
JOURNAL OF ENERGY STORAGE, 2021, 41
[2]   Fabrication, electrochemical performance, and in situ infrared thermal imaging of Na0.67(Mn0.5Fe0.5)1-xCuxO2 battery cells [J].
Altin, Serdar ;
Korkusuz, Keziban .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (09) :13809-13821
[3]   Magnetic Properties and Environmental Temperature Effects on Battery Performance of Na0.67Mn0.5Fe0.5O2 [J].
Altin, Serdar ;
Bayri, Ali ;
Altin, Emine ;
Oz, Erdinc ;
Yasar, Sedat ;
Altundag, Sebahat ;
Harfouche, Messaoud ;
Avci, Sevda .
ENERGY TECHNOLOGY, 2021, 9 (05)
[4]   Enhanced Sodium Ion Storage Behavior of P2-Type Na2/3Fe1/2Mn1/2O2 Synthesized via a Chelating Agent Assisted Route [J].
Bai, Ying ;
Zhao, Lixiang ;
Wu, Chuan ;
Li, Hui ;
Li, Yu ;
Wu, Feng .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (04) :2857-2865
[5]   Restraining Oxygen Loss and Suppressing Structural Distortion in a Newly Ti-Substituted Layered Oxide P2-Na0.66Li0.22Ti0.15Mn0.63O2 [J].
Cao, Xin ;
Li, Xiang ;
Qiao, Yu ;
Jia, Min ;
Qiu, Feilong ;
He, Yibo ;
He, Ping ;
Zhou, Haoshen .
ACS ENERGY LETTERS, 2019, 4 (10) :2409-+
[6]   New insights into "dead lithium" during stripping in lithium metal batteries [J].
Chen, Xiao-Ru ;
Yan, Chong ;
Ding, Jun-Fan ;
Peng, Hong-Jie ;
Zhang, Qiang .
JOURNAL OF ENERGY CHEMISTRY, 2021, 62 :289-294
[7]   Triggering anionic redox activity in Fe/Mn-based layered oxide for high-performance sodium-ion batteries [J].
Chen, Ziwei ;
Yang, Maolin ;
Chen, Guojie ;
Tang, Guangxia ;
Huang, Zhongyuan ;
Chu, Mihai ;
Qi, Rui ;
Li, Simo ;
Wang, Rui ;
Wang, Chaoqi ;
Zhang, Taolve ;
Zhai, Jingjun ;
Zhao, Wenguang ;
Zhang, Junrong ;
Chen, Jie ;
He, Lunhua ;
Xu, Juping ;
Yin, Wen ;
Wang, Jun ;
Xiao, Yinguo .
NANO ENERGY, 2022, 94
[8]   Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS [J].
Daheron, L. ;
Dedryvere, R. ;
Martinez, H. ;
Menetrier, M. ;
Denage, C. ;
Delmas, C. ;
Gonbeau, D. .
CHEMISTRY OF MATERIALS, 2008, 20 (02) :583-590
[9]   Designing advanced P3-type K0.45Ni0.1Co0.1Mn0.8O2 and improving electrochemical performance via Al/Mg doping as a new cathode Material for potassium-ion batteries [J].
Dang, Rongbin ;
Li, Na ;
Yang, Yuqiang ;
Wu, Kang ;
Li, Qingyuan ;
Lee, Yu Lin ;
Liu, Xiangfeng ;
Hu, Zhongbo ;
Xiao, Xiaoling .
JOURNAL OF POWER SOURCES, 2020, 464
[10]   Improving Energy Density and Structural Stability of Manganese Oxide Cathodes for Na-Ion Batteries by Structural Lithium Substitution [J].
de la Llave, Ezequiel ;
Talaie, Elahe ;
Levi, Elena ;
Nayak, Prasant Kumar ;
Dixit, Mudit ;
Rao, Penki Tirupathi ;
Hartmann, Pascal ;
Chesneau, Hartmann Frederick ;
Major, Dan Thomas ;
Greenstein, Miri ;
Aurbach, Doron ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2016, 28 (24) :9064-9076