Laguerre polynomials, restriction principle, and holomorphic representations of SL(2, R)

被引:14
作者
Davidson, M [1 ]
Olafsson, G
Zhang, G
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
基金
美国国家科学基金会;
关键词
Laguerre polynomials; representation theory; Lie groups; special functions; Segal-Bargman transform; restriction principle; SL(2; R);
D O I
10.1023/A:1015283100541
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The restriction principle is used to implement a realization of the holomorphic representations of SL(2,R) on L-2 (R+,t(alpha) dt) by way of the standard upper half plane realization. The resulting unitary equivalence establishes a correspondence between functions that transform according to the character theta right arrow e(-i(2n+alpha+1)theta) under rotations and the Laguerre polynomials. The standard recursion relations amongst Laguerre polynomials are derived from the action of the Lie algebra.
引用
收藏
页码:261 / 277
页数:17
相关论文
共 32 条
[1]  
ABEL AH, 1881, OEUVERES CINOKETES, V2, P284
[2]  
[Anonymous], 1989, ANN MATH STUD
[3]  
BEREZIN FA, 1978, DOKL AKAD NAUK SSSR+, V241, P15
[4]  
BEREZIN FA, 1975, MATH USSR IZV, V9, P341
[5]  
DAVIDSON M, UNPUB SEGAL BARGMANN
[6]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[7]  
FABEC R, 2000, UNPUB FOCK SPACES CO
[8]  
Faraut J., 1994, OXFORD MATH MONOGR
[9]  
GINDIKIN SG, RUSSIAN MATH SURVEYS, V19, P1
[10]  
Gradshteyn I. S., 1980, TABLE INTEGRALS SERI