Monotone maps, the likeness relation and G-structures

被引:0
作者
Cichon, Daniel [1 ]
Krupski, Pawel [1 ]
Omiljanowski, Krzysztof [1 ]
机构
[1] Univ Wroclaw, Math Inst, PL-50384 Wroclaw, Poland
关键词
epsilon-map; G-structure; Graph; Locally connected continuum; Monotone map;
D O I
10.1016/j.topol.2007.04.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Locally connected continua which admit monotone maps onto graphs are characterized. A notion of a G-structure is introduced for any graph G as a generalization of a linear or circular chain (of arbitrary finite length) cover of a continuum by its subcontinua. It is proved that a locally connected continuum X has a G-structure iff G is X-like. We show that any nondegenerate locally connected continuum has an arc-structure or a circle-structure. We find some invariants of the likeness relation. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2031 / 2040
页数:10
相关论文
共 19 条
[1]  
ALEKSANDROV PS, 1928, ANSCHAUUNG MATH ANN, V98, P617
[2]   COUNTEREXAMPLE TO A CONJECTURE OF STONE,A.H. [J].
BELL, H ;
DICKMAN, RF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 71 (02) :305-308
[3]  
Burgess C. E., 1959, PAC J MATH, V9, P653
[4]  
BUSKIRK RD, 1992, HOUSTON J MATH, V18, P319
[5]   Classification problems in continuum theory [J].
Camerlo, R ;
Darji, UB ;
Marcone, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (11) :4301-4328
[6]  
DICKMAN RF, 1976, FUND MATH, V91, P219
[7]   On Burgess's theorem and related problems [J].
Kato, H ;
Ye, XD .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) :2501-2506
[8]  
Kuratowski K., 1968, TOPOLOGY, VII
[9]  
Kuratowski K., 1933, Fundam. Math., V20, P244
[10]  
Lewis W., 1984, TOPOL P, V9, P329