The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H-2 production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FIN and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H-2 production compared to that in FW only, reaching H-2-production yields of 145 and 109 ml g VS0-1, respectively, which are 1.5-2 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H2 production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process. (C) 2013 Elsevier Ltd. All rights reserved.