TeleOphta: Machine learning and image processing methods for teleophthalmology

被引:304
作者
Decenciere, E. [1 ]
Cazuguel, G. [4 ,6 ]
Zhang, X. [1 ]
Thibault, G. [1 ]
Klein, J. -C. [1 ]
Meyer, F. [1 ]
Marcotegui, B. [1 ]
Quellec, G. [4 ]
Lamard, M. [4 ,7 ]
Danno, R. [5 ]
Elie, D. [5 ]
Massin, P. [2 ]
Viktor, Z. [2 ]
Erginay, A. [2 ]
Lay, B. [5 ]
Chabouis, A. [3 ]
机构
[1] MINES ParisTech, Ctr Math Morphol, Syst & Math Dept, F-77300 Fontainebleau, France
[2] Hop Lariboisiere, AP HP, Serv Ophtalmol, F-75475 Paris 10, France
[3] AP HP, Parcours Patients & Org Med Innovantes Telemed, Direct Polit Med, F-75184 Paris 04, France
[4] CHRU Morvan, Inserm UMR LaTIM 1101, F-29200 Brest, France
[5] ADCIS, F-14280 St Contest, France
[6] Telecom Bretagne, Inst Mines Telecom, ITI Dept, F-29200 Brest, France
[7] Univ Brest, Inserm UMR LaTIM 1101, SFR ScInBioS, F-29200 Brest, France
关键词
MICROANEURYSMS; RETRIEVAL;
D O I
10.1016/j.irbm.2013.01.010
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A complete prototype for the automatic detection of normal examinations on a teleophthalmology network for diabetic retinopathy screening is presented. The system combines pathological pattern mining methods, with specific lesion detection methods, to extract information from the images. This information, plus patient and other contextual data, is used by a classifier to compute an abnormality risk. Such a system should reduce the burden on readers on teleophthalmology networks. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:196 / 203
页数:8
相关论文
共 50 条
  • [41] Methods for automatic and assisted image annotation
    Jesus, Rui
    Abrantes, Arnaldo J.
    Correia, Nuno
    MULTIMEDIA TOOLS AND APPLICATIONS, 2011, 55 (01) : 7 - 26
  • [42] Learning automata for image segmentation
    Sang, Qian
    Lin, Zongli
    Acton, Scott T.
    PATTERN RECOGNITION LETTERS, 2016, 74 : 46 - 52
  • [43] Algorithms for digital image processing in diabetic retinopathy
    Winder, R. J.
    Morrow, P. J.
    McRitchie, I. N.
    Bailie, J. R.
    Hart, P. M.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (08) : 608 - 622
  • [44] Estimating Soil Moisture Over Winter Wheat Fields During Growing Season Using Machine-Learning Methods
    Chen, Lin
    Xing, Minfeng
    He, Binbin
    Wang, Jinfei
    Shang, Jiali
    Huang, Xiaodong
    Xu, Min
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3706 - 3718
  • [45] Machine learning-based methods for sea surface rainfall detection from CYGNSS delay-doppler maps
    Bu, Jinwei
    Yu, Kegen
    Ni, Jun
    Yan, Qingyun
    Han, Shuai
    Wang, Jin
    Wang, Changyang
    GPS SOLUTIONS, 2022, 26 (04)
  • [46] Spectral matching approaches in hyperspectral image processing
    Shanmugam, S.
    SrinivasaPerumal, P.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (24) : 8217 - 8251
  • [47] Machine Learning Classifiers for Speech Detection
    Prasanna, Dasari Lakshmi
    Tripathi, Suman Lata
    PROCEEDINGS OF 3RD IEEE CONFERENCE ON VLSI DEVICE, CIRCUIT AND SYSTEM (IEEE VLSI DCS 2022), 2022, : 143 - 147
  • [48] CAD models clustering with machine learning
    Machalica, Dawid
    Matyjewski, Marek
    ARCHIVE OF MECHANICAL ENGINEERING, 2019, 66 (02) : 133 - 152
  • [49] Aerosol Characterization Using Machine Learning
    Natraj, Vijay
    Chen, Sihe
    Zeng, Zhao-Cheng
    Yung, Yuk L.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6638 - 6641
  • [50] Image Categorization by Learning with Context and Consistency
    Lu, Zhiwu
    Ip, Horace H. S.
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2711 - 2718