TeleOphta: Machine learning and image processing methods for teleophthalmology

被引:304
|
作者
Decenciere, E. [1 ]
Cazuguel, G. [4 ,6 ]
Zhang, X. [1 ]
Thibault, G. [1 ]
Klein, J. -C. [1 ]
Meyer, F. [1 ]
Marcotegui, B. [1 ]
Quellec, G. [4 ]
Lamard, M. [4 ,7 ]
Danno, R. [5 ]
Elie, D. [5 ]
Massin, P. [2 ]
Viktor, Z. [2 ]
Erginay, A. [2 ]
Lay, B. [5 ]
Chabouis, A. [3 ]
机构
[1] MINES ParisTech, Ctr Math Morphol, Syst & Math Dept, F-77300 Fontainebleau, France
[2] Hop Lariboisiere, AP HP, Serv Ophtalmol, F-75475 Paris 10, France
[3] AP HP, Parcours Patients & Org Med Innovantes Telemed, Direct Polit Med, F-75184 Paris 04, France
[4] CHRU Morvan, Inserm UMR LaTIM 1101, F-29200 Brest, France
[5] ADCIS, F-14280 St Contest, France
[6] Telecom Bretagne, Inst Mines Telecom, ITI Dept, F-29200 Brest, France
[7] Univ Brest, Inserm UMR LaTIM 1101, SFR ScInBioS, F-29200 Brest, France
关键词
MICROANEURYSMS; RETRIEVAL;
D O I
10.1016/j.irbm.2013.01.010
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A complete prototype for the automatic detection of normal examinations on a teleophthalmology network for diabetic retinopathy screening is presented. The system combines pathological pattern mining methods, with specific lesion detection methods, to extract information from the images. This information, plus patient and other contextual data, is used by a classifier to compute an abnormality risk. Such a system should reduce the burden on readers on teleophthalmology networks. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:196 / 203
页数:8
相关论文
共 50 条
  • [31] Special Issue on Machine Learning Methods in Signal Processing
    Feder, M
    Figueiredo, MAT
    Hero, AO
    Lee, CH
    Loeliger, HA
    Nowak, R
    Singer, AC
    Yu, B
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2004, 52 (08) : 2152 - 2152
  • [32] A Research on Machine Learning Methods for Big Data Processing
    Qiu, Junfei
    Sun, Youming
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT INNOVATION, 2015, 28 : 920 - 928
  • [33] Tutorial: Machine learning methods in natural language processing
    Collins, M
    LEARNING THEORY AND KERNEL MACHINES, 2003, 2777 : 655 - 655
  • [34] Classification of Hatchery Eggs Using a Machine Learning Algorithm Based on Image Processing Methods: A Comparative Study
    A, Celik
    Tekin, E.
    BRAZILIAN JOURNAL OF POULTRY SCIENCE, 2024, 26 (02)
  • [35] Multimodal Data Fusion using Signal/Image Processing Methods for Multi-Class Machine Learning
    Richards, Casey J.
    Valliani, Nawal
    Johnson, Benjamin A.
    Wong, Nelson Ka Ki
    Pennati, Angelo
    Saeed, Amir K.
    Rodriguez, Benjamin M.
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXXII, 2023, 12547
  • [36] An Efficient System for Diagnosis of Human Blindness Using Image-Processing and Machine-Learning Methods
    Alomari, Saleh Ali
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (10) : 82 - 98
  • [37] A Survey of Image Synthesis Methods for Visual Machine Learning
    Tsirikoglou, A.
    Eilertsen, G.
    Unger, J.
    COMPUTER GRAPHICS FORUM, 2020, 39 (06) : 426 - 451
  • [38] Methods and Algorithms for Image Compression Based on Machine Learning
    Gashnikov, M. V.
    Chubar, M. A.
    Yakubenko, M. A.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2022, 58 (05) : 495 - 502
  • [39] Image driven machine learning methods for microstructure recognition
    Chowdhury, Aritra
    Kautz, Elizabeth
    Yener, Bulent
    Lewis, Daniel
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 123 : 176 - 187
  • [40] EVALUTION OF MACHINE LEARNING METHODS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Kumar, M. Suresh
    Keerthi, V.
    Anjnai, R. N.
    Sarma, M. Manju
    Bothale, Vinod
    2020 IEEE INDIA GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (INGARSS), 2020, : 225 - 228