TeleOphta: Machine learning and image processing methods for teleophthalmology

被引:304
|
作者
Decenciere, E. [1 ]
Cazuguel, G. [4 ,6 ]
Zhang, X. [1 ]
Thibault, G. [1 ]
Klein, J. -C. [1 ]
Meyer, F. [1 ]
Marcotegui, B. [1 ]
Quellec, G. [4 ]
Lamard, M. [4 ,7 ]
Danno, R. [5 ]
Elie, D. [5 ]
Massin, P. [2 ]
Viktor, Z. [2 ]
Erginay, A. [2 ]
Lay, B. [5 ]
Chabouis, A. [3 ]
机构
[1] MINES ParisTech, Ctr Math Morphol, Syst & Math Dept, F-77300 Fontainebleau, France
[2] Hop Lariboisiere, AP HP, Serv Ophtalmol, F-75475 Paris 10, France
[3] AP HP, Parcours Patients & Org Med Innovantes Telemed, Direct Polit Med, F-75184 Paris 04, France
[4] CHRU Morvan, Inserm UMR LaTIM 1101, F-29200 Brest, France
[5] ADCIS, F-14280 St Contest, France
[6] Telecom Bretagne, Inst Mines Telecom, ITI Dept, F-29200 Brest, France
[7] Univ Brest, Inserm UMR LaTIM 1101, SFR ScInBioS, F-29200 Brest, France
关键词
MICROANEURYSMS; RETRIEVAL;
D O I
10.1016/j.irbm.2013.01.010
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A complete prototype for the automatic detection of normal examinations on a teleophthalmology network for diabetic retinopathy screening is presented. The system combines pathological pattern mining methods, with specific lesion detection methods, to extract information from the images. This information, plus patient and other contextual data, is used by a classifier to compute an abnormality risk. Such a system should reduce the burden on readers on teleophthalmology networks. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:196 / 203
页数:8
相关论文
共 50 条
  • [21] Applications of artificial intelligence and machine learning in image processing
    Xu, Pingyuan
    Wang, Jinyuan
    Jiang, Yu
    Gong, Xiangbing
    FRONTIERS IN MATERIALS, 2024, 11
  • [22] Machine Learning for Medical Image Processing and Pattern Recognition
    Suzuki, K.
    MEDICAL PHYSICS, 2010, 37 (06) : 3396 - +
  • [23] Image Processing and Machine Learning for Diagnostic Analysis of Microcirculation
    Demir, Sumeyra
    Mirshahi, Nazanin
    Tiba, M. Hakam
    Draucker, Gerard
    Ward, Kevin
    Hobson, Rosalyn
    Najarian, Kayvan
    2009 ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING, 2009, : 60 - +
  • [24] Special Issue on Machine Learning for Text and Image Processing
    Lv, Jianhui
    Lin, Zhiwei
    Cheng, Hui
    Zhang, Qingyi
    Ma, Lianbo
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2022, 31 (04)
  • [25] Artificial Intelligence and Machine Learning in Sensing and Image Processing
    Chen, Jing
    Wang, Miaohui
    Hsia, Chih-Hsien
    SENSORS, 2025, 25 (06)
  • [26] Machine Learning for Plant Phenotyping Needs Image Processing
    Tsaftaris, Sotirios A.
    Minervini, Massimo
    Scharr, Hanno
    TRENDS IN PLANT SCIENCE, 2016, 21 (12) : 989 - 991
  • [27] Advances in image processing using machine learning techniques
    Jovanovic Dolecek, Gordana
    Cho, Namik
    IET SIGNAL PROCESSING, 2022, 16 (06) : 615 - 618
  • [28] IMAGE PROCESSING AND MACHINE LEARNING FOR THE DIAGNOSIS OF MELANOMA CANCER
    Raghuvanshi, Arushi
    Perkowski, Marek
    BIODEVICES 2011, 2011, : 405 - +
  • [29] A combination of machine learning and image processing technologies for the classification of image regions
    Lattner, AD
    Miene, A
    Herzog, O
    ADAPTIVE MULTIMEDIA RETRIEVAL, 2004, 3094 : 185 - 199
  • [30] Special Issue on "Machine Learning/Deep Learning in Medical Image Processing"
    Nishio, Mizuho
    APPLIED SCIENCES-BASEL, 2021, 11 (23):