TeleOphta: Machine learning and image processing methods for teleophthalmology

被引:304
|
作者
Decenciere, E. [1 ]
Cazuguel, G. [4 ,6 ]
Zhang, X. [1 ]
Thibault, G. [1 ]
Klein, J. -C. [1 ]
Meyer, F. [1 ]
Marcotegui, B. [1 ]
Quellec, G. [4 ]
Lamard, M. [4 ,7 ]
Danno, R. [5 ]
Elie, D. [5 ]
Massin, P. [2 ]
Viktor, Z. [2 ]
Erginay, A. [2 ]
Lay, B. [5 ]
Chabouis, A. [3 ]
机构
[1] MINES ParisTech, Ctr Math Morphol, Syst & Math Dept, F-77300 Fontainebleau, France
[2] Hop Lariboisiere, AP HP, Serv Ophtalmol, F-75475 Paris 10, France
[3] AP HP, Parcours Patients & Org Med Innovantes Telemed, Direct Polit Med, F-75184 Paris 04, France
[4] CHRU Morvan, Inserm UMR LaTIM 1101, F-29200 Brest, France
[5] ADCIS, F-14280 St Contest, France
[6] Telecom Bretagne, Inst Mines Telecom, ITI Dept, F-29200 Brest, France
[7] Univ Brest, Inserm UMR LaTIM 1101, SFR ScInBioS, F-29200 Brest, France
关键词
MICROANEURYSMS; RETRIEVAL;
D O I
10.1016/j.irbm.2013.01.010
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A complete prototype for the automatic detection of normal examinations on a teleophthalmology network for diabetic retinopathy screening is presented. The system combines pathological pattern mining methods, with specific lesion detection methods, to extract information from the images. This information, plus patient and other contextual data, is used by a classifier to compute an abnormality risk. Such a system should reduce the burden on readers on teleophthalmology networks. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:196 / 203
页数:8
相关论文
共 50 条
  • [1] Machine (Deep) Learning Methods for Image Processing and Radiomics
    Hatt, Mathieu
    Parmar, Chintan
    Qi, Jinyi
    El Naqa, Issam
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) : 104 - 108
  • [2] Machine Learning in Image Processing
    Lezoray, Olivier
    Charrier, Christophe
    Cardot, Hubert
    Lefevre, Sebastien
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
  • [3] Machine Learning in Image Processing
    Olivier Lézoray
    Christophe Charrier
    Hubert Cardot
    Sébastien Lefèvre
    EURASIP Journal on Advances in Signal Processing, 2008
  • [4] Image Processing Methods for Face Recognition using Machine Learning Techniques
    Babu, T. R. Ganesh
    Shenbagadevi, K.
    Shoba, V. Sri
    Shrinidhi, S.
    Sabitha, J.
    Saravanakumar, U.
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 519 - 523
  • [5] Machine learning in intelligent image processing
    Tao, Dacheng
    Wang, Dianhui
    Murtagh, Fionn
    SIGNAL PROCESSING, 2013, 93 (06) : 1399 - 1400
  • [6] Machine Learning and Image Processing Methods for Cetacean Photo Identification: A Systematic Review
    Maglietta, Rosalia
    Carlucci, Roberto
    Fanizza, Carmelo
    Dimauro, Giovanni
    IEEE ACCESS, 2022, 10 : 80195 - 80207
  • [7] A Novel Mango Grading System Based on Image Processing and Machine Learning Methods
    Doan, Thanh-Nghi
    Le-Thi, Duc-Ngoc
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (05) : 1118 - 1129
  • [8] Machine learning methods for bio-medical image and signal processing: Recent advances
    Wang, Lipo
    Sourina, Olga
    Erdt, Marius
    Wang, Yaoli
    Chang, Qing
    METHODS, 2022, 202 : 1 - 2
  • [9] Machine learning and handcrafted image processing methods for classifying common weeds in corn field
    Pathak, Harsh
    Igathinathane, C.
    Howatt, Kirk
    Zhang, Zhao
    SMART AGRICULTURAL TECHNOLOGY, 2023, 5
  • [10] Prediction of Rail Contact Fatigue on Crossings Using Image Processing and Machine Learning Methods
    Sysyn, Mykola
    Gerber, Ulf
    Nabochenko, Olga
    Gruen, Dmitri
    Kluge, Franziska
    URBAN RAIL TRANSIT, 2019, 5 (02) : 123 - 132