Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells

被引:159
作者
Zhao, Guoqing [1 ,2 ]
Wang, Wei [3 ]
Bae, Tae-Sung [4 ]
Lee, Sang-Geul [5 ]
Mun, ChaeWon [2 ]
Lee, Sunghun [2 ]
Yu, Huashun [1 ]
Lee, Gun-Hwan [6 ]
Song, Myungkwan [2 ]
Yun, Jungheum [2 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China
[2] Korea Inst Mat Sci, Div Surface Technol, Chang Won 641831, Gyeongnam, South Korea
[3] Qingdao Univ, Inst Hybrid Mat, Growing Base State Key Lab, Qingdao 266071, Peoples R China
[4] Korea Basic Sci Inst, Jeonju Ctr, Jeonju 561180, Jeonbuk, South Korea
[5] Korea Basic Sci Inst, Daegu Ctr, Daegu 702701, South Korea
[6] Korea Inst Mat Sci, Div Commercializat Res, Chang Won 641831, Gyeongnam, South Korea
关键词
TRANSPARENT ELECTRODES; COMPOSITE ELECTRODE; WINDOW ELECTRODE; MULTILAYER; SMOOTH; OXIDATION; ANODES; LONG; AG;
D O I
10.1038/ncomms9830
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in flexible optoelectronic devices have led to an increasing need for developing highly efficient, low-cost, flexible transparent conducting electrodes. Copper-based electrodes have been unattainable due to the relatively low optical transmission and poor oxidation resistance of copper. Here, we report the synthesis of a completely continuous, smooth copper ultra-thin film via limited copper oxidation with a trace amount of oxygen. The weakly oxidized copper thin film sandwiched between zinc oxide films exhibits good optoelectrical performance (an average transmittance of 83% over the visible spectral range of 400-800 nm and a sheet resistance of 9 Omega sq(-1)) and strong oxidation resistance. These values surpass those previously reported for copper-based electrodes; further, the record power conversion efficiency of 7.5% makes it clear that the use of an oxidized copper-based transparent electrode on a polymer substrate can provide an effective solution for the fabrication of flexible organic solar cells.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Copper Nanowire-Graphene Core-Shell Nanostructure for Highly Stable Transparent Conducting Electrodes [J].
Ahn, Yumi ;
Jeong, Youngjun ;
Lee, Donghwa ;
Lee, Youngu .
ACS NANO, 2015, 9 (03) :3125-3133
[2]   Copper Nanowire Networks with Transparent Oxide Shells That Prevent Oxidation without Reducing Transmittance [J].
Chen, Zuofeng ;
Ye, Shengrong ;
Stewart, Ian E. ;
Wiley, Benjamin J. .
ACS NANO, 2014, 8 (09) :9673-9679
[3]   Optimization of TiO2/Cu/TiO2 Multilayer as Transparent Composite Electrode (TCE) Deposited on Flexible Substrate at Room Temperature [J].
Dhar, Aritra ;
Alford, T. L. .
ECS SOLID STATE LETTERS, 2014, 3 (11) :N33-N36
[4]   Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer [J].
Formica, Nadia ;
Ghosh, Dhriti S. ;
Carrilero, Albert ;
Chen, Tong Lai ;
Simpson, Robert E. ;
Pruneri, Valerio .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (08) :3048-3053
[5]   ITO/metal/ITO multilayer structures based on Ag and Cu metal films for high-performance transparent electrodes [J].
Guillen, C. ;
Herrero, J. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (08) :938-941
[6]   NEW FIGURE OF MERIT FOR TRANSPARENT CONDUCTORS [J].
HAACKE, G .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (09) :4086-4089
[7]   Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer [J].
Han, H. ;
Theodore, N. D. ;
Alford, T. L. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (01)
[8]   Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures [J].
Hecht, David S. ;
Hu, Liangbing ;
Irvin, Glen .
ADVANCED MATERIALS, 2011, 23 (13) :1482-1513
[9]   Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes [J].
Hu, Liangbing ;
Kim, Han Sun ;
Lee, Jung-Yong ;
Peumans, Peter ;
Cui, Yi .
ACS NANO, 2010, 4 (05) :2955-2963
[10]   A Hybrid Copper: Tungsten Suboxide Window Electrode for Organic Photovoltaics [J].
Hutter, Oliver S. ;
Hatton, Ross A. .
ADVANCED MATERIALS, 2015, 27 (02) :326-331