Fully Automated Prostate Magnetic Resonance Imaging and Transrectal Ultrasound Fusion via a Probabilistic Registration Metric

被引:10
|
作者
Sparks, Rachel [1 ,2 ]
Bloch, B. Nicolas [3 ]
Feleppa, Ernest [4 ]
Barratt, Dean [5 ]
Madabhushi, Anant [2 ]
机构
[1] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ 08855 USA
[2] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[3] Boston Univ, Boston Med Ctr, Dept Radiol, Boston, MA 02215 USA
[4] Lizzi Ctr Biomed Engn, Riverside Res, New York, NY 10001 USA
[5] UCL, Ctr Med Image Comp, London, England
来源
MEDICAL IMAGING 2013: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING | 2013年 / 8671卷
基金
美国国家科学基金会;
关键词
MRI/TRUS DATA FUSION; GUIDED BIOPSY; CANCER-DETECTION; IMAGES; MRI; SEGMENTATION; INHOMOGENEITY; BRACHYTHERAPY; SPECTROSCOPY; STATISTICS;
D O I
10.1117/12.2007610
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this work, we present a novel, automated, registration method to fuse magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS) images of the prostate. Our methodology consists of: (1) delineating the prostate on MRI, (2) building a probabilistic model of prostate location on TRUS, and (3) aligning the MRI prostate segmentation to the TRUS probabilistic model. TRUS-guided needle biopsy is the current gold standard for prostate cancer (CaP) diagnosis. Up to 40% of CaP lesions appear isoechoic on TRUS, hence TRUS-guided biopsy cannot reliably target CaP lesions and is associated with a high false negative rate. MRI is better able to distinguish CaP from benign prostatic tissue, but requires special equipment and training. MRI-TRUS fusion, whereby MRI is acquired pre-operatively and aligned to TRUS during the biopsy procedure, allows for information from both modalities to be used to help guide the biopsy. The use of MRI and TRUS in combination to guide biopsy at least doubles the yield of positive biopsies. Previous work on MRI-TRUS fusion has involved aligning manually determined fiducials or prostate surfaces to achieve image registration. The accuracy of these methods is dependent on the reader's ability to determine fiducials or prostate surfaces with minimal error, which is a difficult and time-consuming task. Our novel, fully automated MRI-TRUS fusion method represents a significant advance over the current state-of-the-art because it does not require manual intervention after TRUS acquisition. All necessary preprocessing steps (i.e. delineation of the prostate on MRI) can be performed offline prior to the biopsy procedure. We evaluated our method on seven patient studies, with B-mode TRUS and a 1.5 T surface coil MRI. Our method has a root mean square error (RMSE) for expertly selected fiducials (consisting of the urethra, calcifications, and the centroids of CaP nodules) of 3.39 +/- 0.85 mm.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Multiattribute probabilistic prostate elastic registration (MAPPER): Application to fusion of ultrasound and magnetic resonance imaging
    Sparks, Rachel
    Bloch, B. Nicolas
    Feleppa, Ernest
    Barratt, Dean
    Moses, Daniel
    Ponsky, Lee
    Madabhushi, Anant
    MEDICAL PHYSICS, 2015, 42 (03) : 1153 - 1163
  • [2] Prostate segmentation in transrectal ultrasound using magnetic resonance imaging priors
    Zeng, Qi
    Samei, Golnoosh
    Karimi, Davood
    Kesch, Claudia
    Mahdavi, Sara S.
    Abolmaesumi, Purang
    Salcudean, Septimiu E.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2018, 13 (06) : 749 - 757
  • [3] Elastic Versus Rigid Image Registration in Magnetic Resonance Imaging-transrectal Ultrasound Fusion Prostate Biopsy: A Systematic Review and Meta-analysis
    Venderink, Wulphert
    de Rooij, Maarten
    Sedelaar, J. P. Michiel
    Huisman, Henkjan J.
    Futterer, Jurgen J.
    EUROPEAN UROLOGY FOCUS, 2018, 4 (02): : 219 - 227
  • [4] Magnetic Resonance Imaging-Transrectal Ultrasound Fusion Biopsy of the Prostate-An Update
    Das, Chandan J.
    Razik, Abdul
    Sharma, Sanjay
    SEMINARS IN ROENTGENOLOGY, 2018, 53 (03) : 219 - 226
  • [5] Deep Learning for Real -time, Automatic, and Scanner-adapted Prostate (Zone) Segmentation of Transrectal Ultrasound, for Example, Magnetic Resonance Imaging ?transrectal Ultrasound
    van Sloun, Ruud J. G.
    Wildeboer, Rogier R.
    Mannaerts, Christophe K.
    Postema, Arnoud W.
    Gayet, Maudy
    Beerlage, Harrie P.
    Salomon, Georg
    Wijkstra, Hessel
    Mischi, Massimo
    EUROPEAN UROLOGY FOCUS, 2021, 7 (01): : 78 - 85
  • [6] Visibility of prostate cancer on transrectal ultrasound during fusion with multiparametric magnetic resonance imaging for biopsy
    van de Ven, Wendy J. M.
    Sedelaar, J. P. Michiel
    van der Leest, Marloes M. G.
    Hulsbergen-van de Kaa, Christina A.
    Barentsz, Jelle O.
    Futterer, Jurgen J.
    Huisman, Henkjan J.
    CLINICAL IMAGING, 2016, 40 (04) : 745 - 750
  • [7] Multiparametric Magnetic Resonance Imaging/Transrectal Ultrasound Fusion Targeted Biopsy of the Prostate: Preliminary Results of a Prospective Single-Centre Study
    Junker, Daniel
    Schafer, Georg
    Heidegger, Isabel
    Bektic, Jasmin
    Ladurner, Michael
    Jaschke, Werner
    Aigner, Friedrich
    UROLOGIA INTERNATIONALIS, 2015, 94 (03) : 313 - 318
  • [8] Magnetic Resonance Imaging/Ultrasound Fusion-guided Transperineal Versus Magnetic Resonance Imaging/Ultrasound Fusion-guided Transrectal Prostate Biopsy-A Systematic Review
    Rai, Bhavan Prasad
    Mayerhofer, Christoph
    Somani, Bhaskar Kumar
    Kallidonis, Panagiotis
    Nagele, Udo
    Tokas, Theodoros
    EUROPEAN UROLOGY ONCOLOGY, 2021, 4 (06): : 904 - 913
  • [9] Optimal Number of Systematic Biopsy Cores Used in Magnetic Resonance Imaging/Transrectal Ultrasound Fusion Targeted Prostate Biopsy
    Teraoka, Shogo
    Honda, Masashi
    Shimizu, Ryutaro
    Nishikawa, Ryoma
    Kimura, Yusuke
    Yumioka, Tetsuya
    Iwamoto, Hideto
    Morizane, Shuichi
    Hikita, Katsuya
    Takenaka, Atsushi
    YONAGO ACTA MEDICA, 2021, 64 (03) : 260 - 268
  • [10] A Novel and Fully Automated Registration Method for Prostate Cancer Detection Using Multiparametric Magnetic Resonance Imaging
    Giannini, Valentina
    Vignati, Anna
    De Luca, Massimo
    Mazzetti, Simone
    Russo, Filippo
    Armando, Enrico
    Stasi, Michele
    Bollito, Enrico
    Porpiglia, Francesco
    Regge, D.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2015, 5 (06) : 1171 - 1182