Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns

被引:201
作者
Aoude, Georges S. [1 ]
Luders, Brandon D. [1 ]
Joseph, Joshua M. [1 ]
Roy, Nicholas [1 ]
How, Jonathan P. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
关键词
Planning under uncertainty; Trajectory prediction; Gaussian processes; APPROXIMATION;
D O I
10.1007/s10514-013-9334-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a real-time path planning algorithm that guarantees probabilistic feasibility for autonomous robots with uncertain dynamics operating amidst one or more dynamic obstacles with uncertain motion patterns. Planning safe trajectories under such conditions requires both accurate prediction and proper integration of future obstacle behavior within the planner. Given that available observation data is limited, the motion model must provide generalizable predictions that satisfy dynamic and environmental constraints, a limitation of existing approaches. This work presents a novel solution, named RR-GP, which builds a learned motion pattern model by combining the flexibility of Gaussian processes (GP) with the efficiency of RRT-Reach, a sampling-based reachability computation. Obstacle trajectory GP predictions are conditioned on dynamically feasible paths identified from the reachability analysis, yielding more accurate predictions of future behavior. RR-GP predictions are integrated with a robust path planner, using chance-constrained RRT, to identify probabilistically feasible paths. Theoretical guarantees of probabilistic feasibility are shown for linear systems under Gaussian uncertainty; approximations for nonlinear dynamics and/or non-Gaussian uncertainty are also presented. Simulations demonstrate that, with this planner, an autonomous vehicle can safely navigate a complex environment in real-time while significantly reducing the risk of collisions with dynamic obstacles.
引用
收藏
页码:51 / 76
页数:26
相关论文
共 49 条
[1]  
Althoff D., 2011, IEEE INT C ROB AUT I
[2]  
Amidi O., 1990, SPIE MOBILE ROBOTS, P504
[3]  
[Anonymous], 2006, Planning algorithms
[4]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[5]  
[Anonymous], 2009, P 26 ANN INT C MACH
[6]  
[Anonymous], 1998, RAPIDLY EXPLORING RA
[7]  
Aoude G., 2011, AIAA INF AER C
[8]  
Aoude G. S., 2010, IEEE C INT TRANSP SY
[9]  
Aoude G. S., 2010, IFAC S INT AUT VEH L
[10]   Threat-aware Path Planning in Uncertain Urban Environments [J].
Aoude, Georges S. ;
Luders, Brandon D. ;
Levine, Daniel S. ;
How, Jonathan P. .
IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, :6058-6063