A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits

被引:342
作者
Amy, Matthew [1 ,2 ]
Maslov, Dmitri [3 ,4 ]
Mosca, Michele [5 ,6 ]
Roetteler, Martin [7 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[3] Natl Sci Fdn, Arlington, VA 22230 USA
[4] Univ Waterloo, Dept Phys & Astron, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Dept Combinator & Optimizat, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[6] Perimeter Inst Theoret Phys, Waterloo, ON N2L 6B9, Canada
[7] NEC Labs Amer, Princeton, NJ 08540 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Brute force search; meet-in-the-middle; quantum circuit optimization; quantum circuit synthesis; REVERSIBLE LOGIC;
D O I
10.1109/TCAD.2013.2244643
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present an algorithm for computing depth-optimal decompositions of logical operations, leveraging a meet-in-the-middle technique to provide a significant speedup over simple brute force algorithms. As an illustration of our method, we implemented this algorithm and found factorizations of commonly used quantum logical operations into elementary gates in the Clifford+T set. In particular, we report a decomposition of the Toffoli gate over the set of Clifford and T gates. Our decomposition achieves a total T-depth of 3, thereby providing a 40% reduction over the previously best known decomposition for the Toffoli gate. Due to the size of the search space, the algorithm is only practical for small parameters, such as the number of qubits, and the number of gates in an optimal implementation.
引用
收藏
页码:818 / 830
页数:13
相关论文
共 28 条
[1]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[2]  
Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
[3]  
[Anonymous], 2012, QCVIEWER TOOL DISPLA
[4]  
Bocharov A., 2012, PHYS REV LETT, V9
[5]   Strong Resilience of Topological Codes to Depolarization [J].
Bombin, H. ;
Andrist, Ruben S. ;
Ohzeki, Masayuki ;
Katzgraber, Helmut G. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW X, 2012, 2 (02)
[6]   Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins [J].
Britton, Joseph W. ;
Sawyer, Brian C. ;
Keith, Adam C. ;
Wang, C. -C. Joseph ;
Freericks, James K. ;
Uys, Hermann ;
Biercuk, Michael J. ;
Bollinger, John J. .
NATURE, 2012, 484 (7395) :489-492
[7]   Single-qubit-gate error below 10-4 in a trapped ion [J].
Brown, K. R. ;
Wilson, A. C. ;
Colombe, Y. ;
Ospelkaus, C. ;
Meier, A. M. ;
Knill, E. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW A, 2011, 84 (03)
[8]  
Childs A.M., 2003, P 35 ANN ACM S THEOR, P59, DOI [DOI 10.1145/780542.780552, 10.1145/780542.780552]
[9]   Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits [J].
Chow, Jerry M. ;
Gambetta, Jay M. ;
Corcoles, A. D. ;
Merkel, Seth T. ;
Smolin, John A. ;
Rigetti, Chad ;
Poletto, S. ;
Keefe, George A. ;
Rothwell, Mary B. ;
Rozen, J. R. ;
Ketchen, Mark B. ;
Steffen, M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (06)
[10]  
Chuang I. N., 2000, Quantum Computation and Quantum Information