Object Recognition Using Summed Features Classifier

被引:0
作者
Lindner, Marcus [1 ]
Block, Marco [1 ]
Rojas, Raul [1 ]
机构
[1] Free Univ Berlin, Inst Informat & Math, D-14195 Berlin, Germany
来源
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I | 2012年 / 7267卷
关键词
IMAGE; ALGORITHMS; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A common task in the field of document digitization for information retrieval is separating text and non-text elements. In this paper an innovative approach of recognizing patterns is presented. Statistical and structural features in arbitrary number are combined into a rating tree, which is an adapted decision tree. Such a tree is trained for character patterns to distinguish text elements from non-text elements. First experiments in a binarization application have shown promising results in significant reduction of false-positives without producing false-negatives.
引用
收藏
页码:543 / 550
页数:8
相关论文
共 24 条
[1]  
Ahmad AT, 2008, INFORM-J COMPUT INFO, V32, P275
[2]  
Al-Taani A.T., 2005, INT J COMPUTATIONAL, V2
[3]   An introduction to MCMC for machine learning [J].
Andrieu, C ;
de Freitas, N ;
Doucet, A ;
Jordan, MI .
MACHINE LEARNING, 2003, 50 (1-2) :5-43
[4]  
[Anonymous], 2006, 2006 IEEE COMP SOC C
[5]  
[Anonymous], 1993, CRGTR931 U TOR DEP C
[6]  
[Anonymous], 2008, Monte Carlo Methods
[7]  
Bajramovic F, 2006, LECT NOTES COMPUT SC, V4179, P1186
[8]  
Behnke S, 1997, 1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, P1391, DOI 10.1109/ICNN.1997.613997
[9]  
Block M, 2009, THIRD INTERNATIONAL CONFERENCE ON DIGITAL SOCIETY: ICDS 2009, PROCEEDINGS, P294, DOI 10.1109/ICDS.2009.45
[10]  
Boiman O., 2008, COMPUTER VISION PATT, P1, DOI DOI 10.1109/CVPR.2008.4587598