Anomalous diffusion and transport in heterogeneous systems separated by a membrane

被引:21
作者
Lenzi, E. K. [1 ]
Ribeiro, H. V. [2 ]
Tateishi, A. A. [3 ]
Zola, R. S. [2 ,4 ]
Evangelista, L. R. [2 ]
机构
[1] Univ Estadual Ponta Grossa, Dept Fis, BR-87030900 Ponta Grossa, Parana, Brazil
[2] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
[3] Univ Tecnol Fed Parana, Dept Fis, BR-85503390 Pato Branco, Parana, Brazil
[4] Univ Tecnol Fed Parana, Dept Fis, BR-86812460 Apucarana, Parana, Brazil
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2016年 / 472卷 / 2195期
关键词
anomalous diffusion; fractional diffusion equations; heterogeneous media; transport; REACTION-KINETICS; NONERGODICITY; SIMULATIONS; BINDING;
D O I
10.1098/rspa.2016.0502
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Diffusion of particles in a heterogeneous system separated by a semipermeable membrane is investigated. The particle dynamics is governed by fractional diffusion equations in the bulk and by kinetic equations on the membrane, which characterizes an interface between two different media. The kinetic equations are solved by incorporating memory effects to account for anomalous diffusion and, consequently, non-Debye relaxations. A rich variety of behaviours for the particle distribution at the interface and in the bulk may be found, depending on the choice of characteristic times in the boundary conditions and on the fractional index of the modelling equations.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Laminar flow through fractal porous materials: the fractional-order transport equation [J].
Alaimo, Gianluca ;
Zingales, Massimiliano .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) :889-902
[2]  
Alberts B., 2002, Molecular Biology of the Cell. (4th edition), V4th ed
[3]  
Ashrafuzzaman M, 2013, MEMBRANE BIOPHYSICS
[4]   Anomalous diffusion of proteins due to molecular crowding [J].
Banks, DS ;
Fradin, C .
BIOPHYSICAL JOURNAL, 2005, 89 (05) :2960-2971
[5]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[6]   A LINEAR RESPONSE APPROACH TO KINETICS WITH TIME-DEPENDENT RATE COEFFICIENTS [J].
BERBERANSANTOS, MN ;
MARTINHO, JMG .
CHEMICAL PHYSICS, 1992, 164 (02) :259-269
[8]  
Bressloff P. C., 2014, STOCHASTIC PROCESSES
[9]   Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity [J].
Cherstvy, Andrey G. ;
Chechkin, Aleksei V. ;
Metzler, Ralf .
SOFT MATTER, 2014, 10 (10) :1591-1601
[10]   Non-Debye relaxation in the dielectric response of nematic liquid crystals: Surface and memory effects in the adsorption-desorption process of ionic impurities [J].
de Paula, J. L. ;
Santoro, P. A. ;
Zola, R. S. ;
Lenzi, E. K. ;
Evangelista, L. R. ;
Ciuchi, F. ;
Mazzulla, A. ;
Scaramuzza, N. .
PHYSICAL REVIEW E, 2012, 86 (05)