A FROBENIUS ALGEBRAIC ANALYSIS FOR PARASITIC GAPS

被引:0
|
作者
Moortgat, Michael [1 ]
Sadrzadeh, Mehrnoosh [2 ]
Wijnholds, Gijs [1 ]
机构
[1] Univ Utrecht, Utrecht, Netherlands
[2] UCL, London, England
来源
JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS | 2020年 / 7卷 / 05期
关键词
D O I
暂无
中图分类号
B81 [逻辑学(论理学)];
学科分类号
010104 ; 010105 ;
摘要
The interpretation of parasitic gaps is an ostensible case of non-linearity in natural language composition. Existing categorial analyses, both in the typelogical and in the combinatory traditions, rely on explicit forms of syntactic copying. We identify two types of parasitic gapping where the duplication of semantic content can be confined to the lexicon. Parasitic gaps in adjuncts are analysed as forms of generalized coordination with a polymorphic type schema for the head of the adjunct phrase. For parasitic gaps affecting arguments of the same predicate, the polymorphism is associated with the lexical item that introduces the primary gap. Our analysis is formulated in terms of Lambek calculus extended with structural control modalities. A compositional translation relates syntactic types and derivations to the interpreting compact closed category of finite dimensional vector spaces and linear maps with Frobenius algebras over it. When interpreted over the necessary semantic spaces, the Frobenius algebras provide the tools to model the proposed instances of lexical polymorphism.
引用
收藏
页码:823 / 852
页数:30
相关论文
共 50 条
  • [21] Some algebraic examples of Frobenius manifolds
    A. E. Mironov
    I. A. Taimanov
    Theoretical and Mathematical Physics, 2007, 151 : 604 - 613
  • [22] A NOTE ON PARASITIC GAPS
    CONTRERAS, H
    LINGUISTIC INQUIRY, 1984, 15 (04) : 698 - 701
  • [23] Some algebraic examples of Frobenius manifolds
    Mironov, A. E.
    Taimanov, I. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 151 (02) : 604 - 613
  • [24] Parasitic Gaps Revisited
    Lee, Kap-Hee
    LINGUISTIC RESEARCH, 2011, 28 (03) : 493 - 515
  • [25] Frobenius Differential-Algebraic Universums on Complex Algebraic Curves
    Gerasimova O.V.
    Razmyslov Y.P.
    Moscow University Mathematics Bulletin, 2018, 73 (4) : 131 - 136
  • [26] ALGEBRAIC PERRON-FROBENIUS THEORY
    BARKER, GP
    SCHNEIDER, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 11 (03) : 219 - 233
  • [27] Differentially algebraic gaps
    Matthias Aschenbrenner
    Lou van den Dries
    Joris van der Hoeven
    Selecta Mathematica, 2005, 11
  • [28] Differentially algebraic gaps
    Aschenbrenner, Matthias
    van den Dries, Lou
    van der Hoeven, Joris
    SELECTA MATHEMATICA-NEW SERIES, 2005, 11 (02): : 247 - 280
  • [29] Frobenius allowable gaps of Generalized Numerical Semigroups
    Singhal, Deepesh
    Lin, Yuxin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04): : 1 - 21
  • [30] Approximation for Frobenius algebraic equations in Witt vectors
    Belair, Luc
    JOURNAL OF ALGEBRA, 2009, 321 (09) : 2353 - 2364