OPTIMIZED MECHANICAL PERFORMANCE OF CANTILEVERED VIBRATION ENERGY HARVESTERS USING A MODAL APPROACH

被引:0
作者
Xiong, X. [1 ]
Oyadiji, S. O. [1 ]
机构
[1] Univ Manchester, Sch Mech Aerosp & Civil Engn, Manchester, Lancs, England
来源
PROCEEDINGS OF THE ASME 12TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS - 2014, VOL 2 | 2014年
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In order to improve the performance of cantilevered vibration energy harvesters, current methods normally vary their geometric dimensions and derive the maximum power outputs by running a full analysis. This paper attempts to optimize the structural performance of cantilevered vibration energy harvesters using a modal approach without carrying out full analysis. The effects of varying geometrical dimensions on the modal mechanical performance are analysed, which includes the analysis on rectangular cantilevered beams with and without extra mass, the convergent and divergent tapered cantilevered beams. The modal approach uses mass ratio and the modal electromechanical coupling coefficient to determine the electrical and mechanical modal performance of vibration energy harvesters. In particular, mass ratio depends on the modal participation factor, and it represents the influence of modal mechanical behaviour on the power density directly. The required modal parameters are derived using the finite element method and a distributed parameter electromechanical model is also used for comparison. The cantilevered beam designs using the modal approach can be used with different sizes with the power ranging from microwatts to milliwatts.
引用
收藏
页数:9
相关论文
共 11 条
[1]  
Anton SR, 2007, SMART MAT STRUCT
[2]   On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters [J].
Erturk, A. ;
Inman, D. J. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2008, 19 (11) :1311-1325
[3]   A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters [J].
Erturk, A. ;
Inman, D. J. .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2008, 130 (04)
[4]  
Guyomar D, 2009, INTELL MAT SYST STRU, P609
[5]  
Inman J D, 2011, PIEZOELECTRIC ENERGY
[6]   A geometric parameter study of piezoelectric coverage on a rectangular cantilever energy harvester [J].
Patel, R. ;
McWilliam, S. ;
Popov, A. A. .
SMART MATERIALS AND STRUCTURES, 2011, 20 (08)
[7]   Design method for piezoelectric bending generators in energy harvesting systems [J].
Richter, Bjoern ;
Twiefel, Jens ;
Sattel, Thomas ;
Wallaschek, Joerg .
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2007, 2007, 6525
[8]   Improving power output for vibration-based energy scavengers [J].
Roundy, S ;
Leland, ES ;
Baker, J ;
Carleton, E ;
Reilly, E ;
Lai, E ;
Otis, B ;
Rabaey, JM ;
Wright, PK ;
Sundararajan, V .
IEEE PERVASIVE COMPUTING, 2005, 4 (01) :28-36
[9]  
SIMULIA Corp, 2010, AB THEOR MAN ABAQUS
[10]   Energy Harvesting Utilizing Single Crystal PMN-PT Material and Application to a Self-Powered Accelerometer [J].
Song, H. J. ;
Choi, Y. T. ;
Wang, G. ;
Wereley, N. M. .
JOURNAL OF MECHANICAL DESIGN, 2009, 131 (09) :0910081-0910088