Existence via time discretization for a class of doubly nonlinear operator-differential equations of Barenblatt-type

被引:2
作者
Emmrich, Etienne [1 ]
Vallet, Guy [2 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] CNRS, UMR 5142, Lab Math & Applicat Pau, F-64013 Pau, France
关键词
Nonlinear evolution equation; Barenblatt equation; Monotone operator; Existence of weak solution; Convergence of time discretization;
D O I
10.1016/j.jde.2012.12.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The initial value problem for a first order operator-differential equation of type M(u') A(u, u') = f is studied, where both M and A are nonlinear operators. The equation can be interpreted as the quasistatic limit of a second order evolution equation with a severe coupling of the damping and nondamping term. Existence of a global-in-time weak solution is shown by proving convergence of a suitable time discretization method. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2499 / 2514
页数:16
相关论文
共 22 条
[11]   Doubly nonlinear evolution equations of second order: Existence and fully discrete approximation [J].
Emmrich, Etienne ;
Thalhammer, Mechthild .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (01) :82-118
[12]   SYSTEMS OF NONLINEAR-WAVE EQUATIONS WITH NONLINEAR VISCOSITY [J].
FRIEDMAN, A ;
NECAS, J .
PACIFIC JOURNAL OF MATHEMATICS, 1988, 135 (01) :29-55
[13]  
Gajewski H., 1974, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen
[14]  
Gripenberg G., 1990, Encyclopedia of Mathematics and its Applications
[15]  
Hokkanen V.-M, 2002, CHAPMAN HALL CRC RES, V432
[16]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[17]  
Lindqvist Peter, 2017, NOTES P LAPLACE EQUA
[18]  
Lions J.-L., 1965, Bull. Soc. Math. Fr., V93, P43
[19]  
Pruss J., 1993, EVOLUTIONARY INTEGRA, DOI 10.1007/978-3-0348-8570-6
[20]  
Ptashnyk M, 2004, THESIS U HEIDELBERG