Existence via time discretization for a class of doubly nonlinear operator-differential equations of Barenblatt-type

被引:2
作者
Emmrich, Etienne [1 ]
Vallet, Guy [2 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] CNRS, UMR 5142, Lab Math & Applicat Pau, F-64013 Pau, France
关键词
Nonlinear evolution equation; Barenblatt equation; Monotone operator; Existence of weak solution; Convergence of time discretization;
D O I
10.1016/j.jde.2012.12.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The initial value problem for a first order operator-differential equation of type M(u') A(u, u') = f is studied, where both M and A are nonlinear operators. The equation can be interpreted as the quasistatic limit of a second order evolution equation with a severe coupling of the damping and nondamping term. Existence of a global-in-time weak solution is shown by proving convergence of a suitable time discretization method. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2499 / 2514
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 1992, Japan J. Indust. Appl. Math.
[2]  
[Anonymous], 1983, Orlicz spaces and modular spaces, Lecture Note in Mahtematics
[3]  
[Anonymous], 1977, Mathematical Surveys
[4]  
[Anonymous], 1990, NONLINEAR FUNCTIONAL
[5]   ANISOTROPIC PARABOLIC EQUATIONS WITH VARIABLE NONLINEARITY [J].
Antontsev, S. ;
Shmarev, S. .
PUBLICACIONS MATEMATIQUES, 2009, 53 (02) :355-399
[6]  
Barenblatt G.I, 1979, CONSULTANTS BUREAU, VXVII
[7]  
Bauzet C, 2011, DIFFER EQUAT APPL, V3, P487
[8]  
Brezis H., 1999, COLLECTION MATH APPL
[9]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[10]   A class of integro-differential equations incorporating nonlinear and nonlocal damping with applications in nonlinear elastodynamics: Existence via time discretization [J].
Emmrich, Etienne ;
Thalhammer, Mechthild .
NONLINEARITY, 2011, 24 (09) :2523-2546