The rate of convergence of q-Durrmeyer operators for 0<q<1

被引:91
作者
Gupta, Vijay [1 ]
Heping, Wang [2 ]
机构
[1] Netaji Subhas Inst Technol, Sch Appl Sci, New Delhi 110075, India
[2] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
q-Durrmeyer operators; modulus of continuity;
D O I
10.1002/mma.1012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we introduce certain q-Durrmeyer operators and estimate the rate of convergence for continuous functions in terms of modulus of continuity. The obtained estimate is sharp with respect to order. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:1946 / 1955
页数:10
相关论文
共 16 条
[1]   Local approximation by a variant of Bernstein-Durrmeyer operators [J].
Abel, Ulrich ;
Gupta, Vijay ;
Mohapatra, Ram N. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) :3372-3381
[2]  
Derriennic MM, 2005, Rendiconti Del Circolo Matematico Di Palermo, Serie II, V76, P269
[3]   Convergence of generalized Bernstein polynomials [J].
Il'inskii, A ;
Ostrovska, S .
JOURNAL OF APPROXIMATION THEORY, 2002, 116 (01) :100-112
[4]  
Kac V., 2002, Quantum calculus
[5]  
LORENTZ GG, 1953, MATH EXPOSITIONS, V8
[6]   q-Bernstein polynomials and their iterates [J].
Ostrovska, S .
JOURNAL OF APPROXIMATION THEORY, 2003, 123 (02) :232-255
[7]  
Ostrovska S., 2007, J MATH ANAL APPROXIM, V2, P35
[8]  
Phillips G. M., 1997, ANN NUMER MATH, V4, P511
[9]  
Phillips GM, 2003, CMS BOOKS MATH, V14
[10]  
Thomae J., 1869, J REINE ANGEW MATH, V70, P258, DOI DOI 10.1515/CRLL.1869.70.258