STRICT VERSIONS OF INTEGRABLE HIERARCHIES IN PSEUDODIFFERENCE OPERATORS AND THE RELATED CAUCHY PROBLEMS

被引:7
作者
Helminck, G. F. [1 ]
Poberezhny, V. A. [2 ,3 ]
Polenkova, S. V. [4 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, Amsterdam, Netherlands
[2] Inst Theoret & Expt Phys, Moscow, Russia
[3] Natl Res Univ Higher Sch Econ, Moscow, Russia
[4] Univ Twente, Enschede, Netherlands
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
pseudodifference operator; Lax equation; zero-curvature form; Cauchy problem; ZERO-CURVATURE CONDITIONS; TODA;
D O I
10.1134/S004057791902003X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the algebra Ps of pseudodifference operators, we consider two deformations of the Lie subalgebra spanned by positive powers of an invertible constant first-degree pseudodifference operator (0). The first deformation is by the group in Ps corresponding to the Lie subalgebra Ps(<0) of elements of negative degree, and the second is by the group corresponding to the Lie subalgebra Ps(0) of elements of degree zero or lower. We require that the evolution equations of both deformations be certain compatible Lax equations that are determined by choosing a Lie subalgebra depending on (0) that respectively complements the Lie subalgebra Ps(<0) or Ps(0). This yields two integrable hierarchies associated with (0), where the hierarchy of the wider deformation is called the strict version of the first because of the form of the Lax equations. For (0) equal to the matrix of the shift operator, the hierarchy corresponding to the simplest deformation is called the discrete KP hierarchy. We show that the two hierarchies have an equivalent zero-curvature form and conclude by discussing the solvability of the related Cauchy problems.
引用
收藏
页码:197 / 214
页数:18
相关论文
共 19 条
[1]  
Adler M, 1997, INT MATH RES NOTICES, V1997, P555
[2]   The solution to the q-KdV equation [J].
Adler, M ;
Horozov, E ;
van Moerbeke, P .
PHYSICS LETTERS A, 1998, 242 (03) :139-151
[3]   Vertex operator solutions to the discrete KP-hierarchy [J].
Adler, M ;
van Moerbeke, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (01) :185-210
[4]  
Adler M., ERGEB MATH GRENZGEB, V47
[5]  
Date E., 1983, NONLINEAR INTEGRABLE
[6]  
DICKEY LA, 2003, SOLITON EQUATIONS HA
[7]   On deformations of linear differential systems [J].
Gontsov, R. R. ;
Poberezhnyi, V. A. ;
Helminck, G. F. .
RUSSIAN MATHEMATICAL SURVEYS, 2011, 66 (01) :63-105
[8]  
Haine L, 2000, INT MATH RES NOTICES, V2000, P281
[9]   A geometric construction of solutions of the strict dKP(Λ0) hierarchy [J].
Helminck, G. F. ;
Poberezhny, V. A. ;
Polenkova, S. V. .
JOURNAL OF GEOMETRY AND PHYSICS, 2018, 131 :189-203
[10]   Integrable deformations in the algebra of pseudodifferential operators from a Lie algebraic perspective [J].
Helminck, G. F. ;
Helminck, A. G. ;
Panasenko, E. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 174 (01) :134-153