Predicting future dynamics from short-term time series using an Anticipated Learning Machine

被引:30
作者
Chen, Chuan [1 ]
Li, Rui [1 ]
Shu, Lin [1 ]
He, Zhiyu [1 ]
Wang, Jining [1 ]
Zhang, Chengming [2 ]
Ma, Huanfei [3 ]
Aihara, Kazuyuki [4 ,5 ]
Chen, Luonan [2 ,6 ,7 ,8 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510275, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Biochem & Cell Biol, Ctr Excellence Mol Cell Sci, Shanghai 200031, Peoples R China
[3] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[4] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
[5] Univ Tokyo, Int Res Ctr Neurointelligence, Tokyo 1130033, Japan
[6] Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Kunming 650223, Yunnan, Peoples R China
[7] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Syst Biol, Hangzhou 310024, Peoples R China
[8] Shanghai Res Ctr Brain Sci & Brain Inspired Intel, Shanghai 201210, Peoples R China
基金
日本学术振兴会; 国家重点研发计划; 中国国家自然科学基金; 日本科学技术振兴机构;
关键词
dynamics-based machine learning; delay embedding theory; short-term time series prediction; dynamics-based data science; SYSTEMS; NETWORK;
D O I
10.1093/nsr/nwaa025
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting time series has significant practical applications over different disciplines. Here, we propose an Anticipated Learning Machine (ALM) to achieve precise future-state predictions based on short-term but high-dimensional data. From non-linear dynamical systems theory, we show that ALM can transform recent correlation/spatial information of high-dimensional variables into future dynamical/temporal information of any target variable, thereby overcoming the small-sample problem and achieving multistep-ahead predictions. Since the training samples generated from high-dimensional data also include information of the unknown future values of the target variable, it is called anticipated learning. Extensive experiments on real-world data demonstrate significantly superior performances of ALM over all of the existing 12 methods. In contrast to traditional statistics-based machine learning, ALM is based on non-linear dynamics, thus opening a new way for dynamics-based machine learning.
引用
收藏
页码:1079 / 1091
页数:13
相关论文
共 42 条
[1]  
Box G. E. P., 1970, Time Series Analysis: Forecasting and Control, DOI DOI 10.1080/01621459.1970.10481180
[2]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356
[3]  
Cesa-Bianchi N., 2006, Prediction, learning, and games, DOI DOI 10.1017/CBO9780511546921
[4]   RECURRENT NEURAL NETWORKS AND ROBUST TIME-SERIES PREDICTION [J].
CONNOR, JT ;
MARTIN, RD ;
ATLAS, LE .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :240-254
[5]  
Das S., 1994, Time Series Analysis, V10
[6]   Modeling and simulation of genetic regulatory systems: A literature review [J].
De Jong, H .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (01) :67-103
[7]   Generalized Theorems for Nonlinear State Space Reconstruction [J].
Deyle, Ethan R. ;
Sugihara, George .
PLOS ONE, 2011, 6 (03)
[8]   Challenges of Big Data analysis [J].
Fan, Jianqing ;
Han, Fang ;
Liu, Han .
NATIONAL SCIENCE REVIEW, 2014, 1 (02) :293-314
[9]   PREDICTING CHAOTIC TIME-SERIES [J].
FARMER, JD ;
SIDOROWICH, JJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (08) :845-848
[10]  
Hinton G. E., 2012, PREPRINT