Pursuit-Evasion with Fixed Beams

被引:0
|
作者
Stiffler, Nicholas M. [1 ]
O'Kane, Jason M. [1 ]
机构
[1] Univ South Carolina, Dept Comp Sci & Engn, 301 Main St, Columbia, SC 29208 USA
来源
2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2016年
关键词
POLYGONAL REGION; VISIBILITY; ALGORITHM; STRATEGIES; PRIMALITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce a complete algorithm for solving a pursuit-evasion problem in a simply connected two-dimensional environment, for the case of a single pursuer equipped with fixed beam sensors. The input for our algorithm is an environment and a collection of sensor directions, in which each is capable of line-of-sight detection in a fixed direction. The output is a pursuer motion strategy that ensures the detection of an evader that moves with unbounded speed, or a statement that no such strategy exists. The intuition of the algorithm is to decompose the environment into a collection of convex conservative regions, within which the evader cannot sneak between any pair of adjacent sensors. This decomposition induces a graph we call the pursuit-evasion graph (PEG), such that any correct solution strategy can be expressed as a path through the PEG. For an instance defined by m beams and an environment with n vertices, the algorithm runs in time O(2(m)n(2)). We implemented the algorithm in simulation and present some computed examples illustrating the algorithm's correctness.
引用
收藏
页码:4251 / 4258
页数:8
相关论文
共 50 条
  • [31] Computational methods in pursuit-evasion problems
    Reimann, J.
    Vachtsevanos, G.
    Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 487 - 491
  • [32] Surveillance for security as a pursuit-evasion game
    Bhattacharya, Sourabh, 1600, Springer Verlag (8840):
  • [33] SOLUTION OF LENEAR PURSUIT-EVASION GAMES
    SAKAWA, Y
    SIAM JOURNAL ON CONTROL, 1970, 8 (01): : 100 - &
  • [34] Pursuit-Evasion in Models of Complex Networks
    Bonato, Anthony
    Pratat, Pawet
    Wang, Changping
    INTERNET MATHEMATICS, 2007, 4 (04) : 419 - 436
  • [35] COMMENTS ON A LINEAR PURSUIT-EVASION GAME
    MESCHLER, PA
    BARON, S
    HO, L
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1967, AC12 (03) : 326 - &
  • [36] Pursuit-evasion with imprecise target location
    Rote, G
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 747 - 753
  • [37] A Pursuit-Evasion Game with Incomplete Information
    Rusnak, G. Hexner, I
    Weiss, H.
    2019 27TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2019, : 583 - 588
  • [38] Visual aircraft identification as a pursuit-evasion game
    Raivio, T
    Ehtamo, H
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2000, 23 (04) : 701 - 708
  • [39] Pursuit-evasion games on Latin square graphs
    Ahirwar, Shreya
    Bonato, Anthony
    Gittins, Leanna
    Huang, Alice
    Marbach, Trent G.
    Zaidman, Tomer
    JOURNAL OF COMBINATORICS, 2023, 14 (04) : 461 - 483
  • [40] Pursuit-evasion in a two-dimensional domain
    Beveridge, Andrew
    Cai, Yiqing
    ARS MATHEMATICA CONTEMPORANEA, 2017, 13 (01) : 187 - 206