On the Leibniz cohomology of vector fields

被引:0
作者
Frabetti, A
Wagemann, F
机构
[1] Univ Lyon 1, Inst Girard Desargues, F-69622 Villeurbanne, France
[2] Univ Nantes, Dept Math, Fac Sci & Tech, F-44322 Nantes, France
关键词
Leibniz cohomology; vector fields; Gelfand-Fuks spectral sequence;
D O I
10.1023/A:1014740320370
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Gelfand and Fuks have studied the cohomology of the Lie algebra of vector fields on a manifold. In this article, we generalize their main tools to compute the Leibniz cohomology, by extending the two spectral sequences associated to the diagonal and the order filtration. In particular, we determine some new generators for the diagonal Leibniz cohomology of the Lie algebra of vector fields on the circle.
引用
收藏
页码:177 / 190
页数:14
相关论文
共 10 条
[1]   COHOMOLOGY OF VECTOR FIELDS ON A MANIFOLD [J].
BOTT, R ;
SEGAL, G .
TOPOLOGY, 1977, 16 (04) :285-298
[2]  
Fuks D. B., 1986, Cohomology of Infinite-Dimensional Lie Algebras
[3]  
Gelfand I., 1969, FUNCT ANAL APPL, V3, P194, DOI [10.1007/BF01676621, DOI 10.1007/BF01676621]
[4]  
HAEFLIGER A, 1976, ANN SCI ECOLE NORM S, V9, P503
[5]   Rational homotopy of Leibniz algebras [J].
Livernet, M .
MANUSCRIPTA MATHEMATICA, 1998, 96 (03) :295-315
[6]   Cup-product for Leibniz cohomology and dual Leibniz algebras [J].
Loday, JL .
MATHEMATICA SCANDINAVICA, 1995, 77 (02) :189-196
[7]  
LODAY JL, 1993, MATH ANN, V296, P569
[8]   Leibniz cohomology for differentiable manifolds [J].
Lodder, JM .
ANNALES DE L INSTITUT FOURIER, 1998, 48 (01) :73-+
[9]   Diagonal and cup-product in Leibniz algebra cohomology [J].
Oudom, JM .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (11) :3623-3635
[10]   ON LEIBNIZ HOMOLOGY [J].
PIRASHVILI, T .
ANNALES DE L INSTITUT FOURIER, 1994, 44 (02) :401-411