Relational Representation of Groupoid Quantales

被引:2
作者
Palmigiano, Alessandra [1 ]
Re, Riccardo [2 ]
机构
[1] Univ Amsterdam, Inst Log Language & Computat, NL-1090 GE Amsterdam, Netherlands
[2] Univ Catania, Dipartimento Matemat & Informat, I-95125 Catania, Italy
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 2013年 / 30卷 / 01期
关键词
Unital involutive quantale; Strongly Gelfand quantale; Set groupoid; Representation theorem;
D O I
10.1007/s11083-011-9227-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Palmigiano and Re (J Pure Appl Algebra 215(8):1945-1957, 2011), spatial SGF-quantales are axiomatically introduced and proved to be representable as sub unital involutive quantales of quantales arising from set groupoids. In the present paper, spatial SGF-quantales of this class are shown to be optimally representable as unital involutive quantales of relations. The results of the present paper have several aspects in common with Jnsson and Tarski's representation theory for relation algebras (Jnsson and Tarski, Am J Math 74(2):127-162, 1952).
引用
收藏
页码:65 / 83
页数:19
相关论文
共 16 条
[1]  
[Anonymous], 1986, Cambridge studies in advanced mathematics
[2]   A REPRESENTATION THEOREM FOR QUANTALES [J].
BROWN, C ;
GURR, D .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 85 (01) :27-42
[3]  
Gelfand I., 1943, Rec. Math. Mat. Sbornik N.S., V12, P197
[4]  
Jnnson B., 1952, American Journal of Mathematics, V74, P127
[5]  
Mulvey C. J., 1986, Supplemento ai Rendiconti del Circolo Matematico di Palermo II, V12, P99
[6]   A noncommutative theory of penrose tilings [J].
Mulvey, CJ ;
Resende, P .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (06) :655-689
[7]   Topological Groupoid Quantales [J].
Palmigiano, A. ;
Re, R. .
STUDIA LOGICA, 2010, 95 (1-2) :125-137
[8]   Groupoid quantales: A non-etale setting [J].
Palmigiano, Alessandra ;
Re, Riccardo .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (08) :1945-1957
[9]   Embeddings of quantales into simple quantales [J].
Paseka, J ;
Kruml, D .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 148 (02) :209-216
[10]  
Paterson A. L. T., 1999, PROGR MATH, V170