Identification of black-box nonlinear models for lower limb movement control using functional electrical stimulation

被引:37
作者
Previdi, F [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron & Informat, I-20133 Milan, Italy
关键词
biocybernetics; NARX models; identification; electrical stimulation;
D O I
10.1016/S0967-0661(01)00128-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, the problem of identification of nonlinear models for the functional electrical stimulation (FES) process is considered. In particular, experiments of stimulation of the quadriceps muscle group and the subsequent movement (or torque release) of the knee-joint will be examined. Both isometric and isotonic experimental conditions are described and NARX models will be identified from data, considering polynomial and neural network structures. For both model families, the issues of parameter estimation, structural identification and model validation will be discussed and effective solutions are proposed. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:91 / 99
页数:9
相关论文
共 31 条
[21]  
PALAZZO F, 1998, P 6 VIENN INT WORKSH
[22]   Identification of the rainfall-runoff relationship in urban drainage networks [J].
Previdi, F ;
Lovera, M ;
Mambretti, S .
CONTROL ENGINEERING PRACTICE, 1999, 7 (12) :1489-1504
[23]  
PREVIDI F, 1999, THESIS POLITECHNICO
[24]  
PREVIDI F, 1999, P 5 EUR CONTR C KARL
[25]   A physiologically based model of muscle activation verified by electrical stimulation [J].
Riener, R ;
Quintern, J .
BIOELECTROCHEMISTRY AND BIOENERGETICS, 1997, 43 (02) :257-264
[26]  
S??derstr??m T., 1989, SYSTEM IDENTIFICATIO
[27]  
Schauer T, 2000, MODELLING AND CONTROL IN BIOMEDICAL SYSTEMS 2000, P7
[28]  
SCHAUER T, 2000, P INT FUNCT EL SIM S
[29]   Nonlinear black-box modeling in system identification: A unified overview [J].
Sjoberg, J ;
Zhang, QH ;
Ljung, L ;
Benveniste, A ;
Delyon, B ;
Glorennec, PY ;
Hjalmarsson, H ;
Juditsky, A .
AUTOMATICA, 1995, 31 (12) :1691-1724
[30]   Overtraining, regularization and searching for a minimum, with application to neural networks [J].
Sjoberg, J ;
Ljung, L .
INTERNATIONAL JOURNAL OF CONTROL, 1995, 62 (06) :1391-1407