Synergetic effect of nitrogen and sulfur co-doping in mesoporous graphene for enhanced energy storage properties in supercapacitors and lithium-ion batteries

被引:20
|
作者
Nankya, Rosalynn [1 ]
Opar, David O. [1 ]
Kim, Min-Jae [3 ]
Paek, Seung-Min [3 ]
Jung, Hyun [1 ,2 ]
机构
[1] Dongguk Univ, Dept Chem, Adv Funct Nanohybrid Mat Lab, Seoul Campus, Seoul 04620, South Korea
[2] Dongguk Univ, Res Ctr Photoenergy Harvesting & Convers Technol, Seoul Campus, Seoul 04620, South Korea
[3] Kyunpook Natl Univ, Dept Chem, Nano Energy Mat Lab, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Supercapacitors; Lithium-ion batteries; Mesoporous graphene; Hydrothermal; N and S co-Doping; DOPED GRAPHENE; ELECTRODE MATERIALS; CODOPED GRAPHENE; 3-DIMENSIONAL NITROGEN; POROUS CARBON; HIGH-CAPACITY; LI-ION; PERFORMANCE; REDUCTION; ANODE;
D O I
10.1016/j.jssc.2020.121451
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Nitrogen and sulfur co-doped mesoporous graphene (NSMG) was fabricated via a hydrothermal method followed by heat treatment utilizing graphite oxide (GO), tri-block co-polymer P123 and thiourea as the N and S source. The porous structure of the NSMG was controlled by heat treatment at 600 degrees C and 800 degrees C thus obtaining NSMG600 and NSMG800 which had specific surface areas of 966 and 1335 m(2)g(-1), respectively. X-ray photoelectron spectroscopy (XPS) of the NSMGs demonstrated the presence of active pyridinic-N, pyrrolic-N, graphiticN, pyridinic N- oxide, thiophene and -SOx groups in the structure. The N and S contents and configurations were controlled by annealing temperature hence influencing the performance in supercapacitors (SC) and lithium-ion batteries (LIBs). There was improved electrolyte ion mobility and lithium-ion diffusion for both SCs and LIBs respectively. The improved performance could be attributed to the unique structural features such as plentiful defects, wrinkles, abundant pores, and N/S co-doping. NSMG600 exhibited the highest capacitance of 261 F g(-1) at 0.5 A g(-1) in SCs while NSMG800 showed the best performance in LIBs with a discharge capacity of 460 mAh g(-1) at 100 mA g(-1) with good cycling stability (440 mAh g(-1)) and superior rate capability. Thus NSMGs exhibit potential application in high-performance energy storage devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Improved electrochemical properties of LiMn2O4 with the Bi and La co-doping for lithium-ion batteries
    Han, Cheng-Gong
    Zhu, Chunyu
    Saito, Genki
    Akiyama, Tomohiro
    RSC ADVANCES, 2015, 5 (89): : 73315 - 73322
  • [22] Effect of Co-doping concentration on α-Fe2O3/Graphene as anode materials for lithium ion batteries
    Li, Chunyue
    Lin, Yuanhua
    Li, Xing
    Li, Zhonghui
    Luo, Pan
    Jin, Yifu
    Li, Zishuo
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 660
  • [23] Synergistic Effect of Co and Mn Co-Doping on SnO2 Lithium-Ion Anodes
    Birrozzi, Adele
    Mullaliu, Angelo
    Eisenmann, Tobias
    Asenbauer, Jakob
    Diemant, Thomas
    Geiger, Dorin
    Kaiser, Ute
    de Souza, Danilo Oliveira
    Ashton, Thomas E.
    Groves, Alexandra R.
    Darr, Jawwad A.
    Passerini, Stefano
    Bresser, Dominic
    INORGANICS, 2022, 10 (04)
  • [24] Effect of Fe and Zn co-doping on LiCoPO 4 cathode materials for High-Voltage Lithium-Ion batteries
    Li, Huilin
    Huang, Shao-Chu
    Chen, Shu-Yu
    Wu, Jianyuan
    Chen, Han-Yi
    Tsai, Cho-Jen
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 669 : 117 - 125
  • [25] Enhanced cycling performance of lithium-ion batteries with V2O5 as cathode by Co-doping for structural stability
    Yuan, Baohe
    Yuan, Xiang
    An, Zheng
    Zhang, Binger
    Luo, Shijun
    Chen, Lulu
    Liu, Xiansheng
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2024, 54 (07) : 1473 - 1484
  • [26] Flexible carbon@graphene composite cloth for advanced lithium-sulfur batteries and supercapacitors with enhanced energy storage capability
    Xie, Qinxing
    Zhao, Peng
    Wu, Shihua
    Zhang, Yufeng
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (23) : 13478 - 13489
  • [27] Effect of synthesis conditions and doping of mesoporous tin dioxide on the properties of electrodes for rechargeable lithium-ion batteries based on it
    S. A. Sergiienko
    V. S. Dyadyun
    P. S. Yaremov
    A. V. Shvets
    Theoretical and Experimental Chemistry, 2013, 49 : 135 - 141
  • [28] EFFECT OF SYNTHESIS CONDITIONS AND DOPING OF MESOPOROUS TIN DIOXIDE ON THE PROPERTIES OF ELECTRODES FOR RECHARGEABLE LITHIUM-ION BATTERIES BASED ON IT
    Sergiienko, S. A.
    Dyadyun, V. S.
    Yaremov, P. S.
    Shvets, A. V.
    THEORETICAL AND EXPERIMENTAL CHEMISTRY, 2013, 49 (02) : 135 - 141
  • [29] Effect of Mg and Zr co-doping on the Co-less Ni-rich cathode materials for advanced lithium-ion batteries
    Luo, Zhongyuan
    Hu, Guorong
    Wang, Weigang
    Peng, Zhongdong
    Fang, Zijun
    Zhao, Baibin
    Li, Huan
    Du, Ke
    Cao, Yanbing
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [30] Ionic liquids in green energy storage devices: lithium-ion batteries, supercapacitors, and solar cells
    Setareh Sheikh
    Alireza Haghpanah Jahromi
    Monatshefte für Chemie - Chemical Monthly, 2024, 155 : 383 - 399