A rare deep intronic mutation of PKHD1 gene, c.8798-459 C > A, causes autosomal recessive polycystic kidney disease by pseudoexon activation

被引:9
|
作者
Chen, Jing [1 ,2 ,3 ]
Mao, Na [4 ]
Zhao, Xiaomeng [1 ]
Li, Wen [1 ,2 ]
Zhang, Qianjun [1 ,2 ]
Yuan, Shimin [1 ]
Tan, Yue-Qiu [1 ,2 ]
Lu, Guangxiu [1 ,2 ]
Lin, Ge [1 ,2 ]
Du, Juan [1 ,2 ]
机构
[1] Reprod & Genet Hosp Cit Xiangya, Changsha 410078, Hunan, Peoples R China
[2] Cent S Univ, Sch Basic Med Sci, Inst Reprod & Stem Cell Engn, Changsha 410078, Hunan, Peoples R China
[3] Hunan Guangxiu Hosp, Changsha 410078, Hunan, Peoples R China
[4] Maternal & Child Hlth Hosp Hunan Prov, Changsha 410078, Hunan, Peoples R China
关键词
VARIANTS;
D O I
10.1038/s10038-018-0550-8
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Autosomal recessive polycystic kidney disease (ARPKD), is a rare hepatorenal fibrocystic disorder primarily associated with progressive growth of multiple cysts in the kidneys causing progressive loss of renal function. The disease is linked to mutations in the PKHD1 gene. In this study, we describe the gene diagnosis and prenatal diagnosis for a consanguineous family with two fetuses diagnosed with polycystic kidney disease by fetal sonography during the pregnancy. Sequence analysis of cDNA synthesized from the PKHD1 mRNA of the second induced fetus identified a 111-nucleotide insert at the junction of exon 56 and 57 that originated from intervening sequence (IVS) 56. Further genomic sequencing of IVS 56 of the PKHD1 gene identified a rare homozygous deep intronic mutation (c.8798-459 C > A), which was inherited from the parents and not detectable in 100 unrelated control subjects. Moreover, we explored the pathogenicity of this deep intronic mutation by conducting a minigene splicing assay experiment, which demonstrated that the mutation causes a pseudoexon insertion, which results in a frameshift followed by a premature termination codon in exon 57. Eventually, the parents had a healthy baby by undergoing prenatal genetic diagnosis based on the targeted detection of the intron mutation. The newly identified deep intronic mutation is associated with a rare mechanism of abnormal splicing that expands the spectrum of known PKHD1 gene mutations. It can be used in evidence-based genetic and reproductive counseling for families with ARPKD.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 50 条
  • [1] A rare deep intronic mutation of PKHD1 gene, c.8798-459 C > A, causes autosomal recessive polycystic kidney disease by pseudoexon activation
    Jing Chen
    Na Ma
    Xiaomeng Zhao
    Wen Li
    Qianjun Zhang
    Shimin Yuan
    Yue-Qiu Tan
    Guangxiu Lu
    Ge Lin
    Juan Du
    Journal of Human Genetics, 2019, 64 : 207 - 214
  • [2] Pseudoexon activation in the PKHD1 gene: a French founder intronic mutation IVS46+653A>G causing severe autosomal recessive polycystic kidney disease
    Michel-Calemard, L.
    Dijoud, F.
    Till, M.
    Lambert, J. C.
    Vercherat, M.
    Tardy, V.
    Coubes, C.
    Morel, Y.
    CLINICAL GENETICS, 2009, 75 (02) : 203 - 206
  • [3] A Deep Intronic PKHD1 Variant Identified by SpliceAI in a Deceased Neonate With Autosomal Recessive Polycystic Kidney Disease
    Richter, Felix
    Rutherford, Kayleigh D.
    Cooke, Anisha J.
    Meshkati, Malorie
    Eddy-Abrams, Vanessa
    Greene, Daniel
    Kosowsky, Jordana
    Park, Yeaji
    Aggarwal, Surabhi
    Burke, Rebecca J.
    Chang, Weili
    Connors, Jillian
    Giannone, Peter J.
    Hays, Thomas
    Khattar, Divya
    Polak, Mark
    Senaldi, Liana
    Smith-Raska, Matthew
    Sridhar, Shanthy
    Steiner, Laurie
    Swanson, Jonathan R.
    Tauber, Kate A.
    Barbosa, Mafalda
    Guttmann, Katherine F.
    Turro, Ernest
    AMERICAN JOURNAL OF KIDNEY DISEASES, 2024, 83 (06) : 829 - 833
  • [4] PKHD1 mutations in autosomal recessive polycystic kidney disease (ARPKD)
    Bergmann, C
    Senderek, J
    Küpper, F
    Schneider, F
    Dornia, C
    Windelen, E
    Eggermann, T
    Rudnik-Schöneborn, S
    Kirfel, J
    Furu, L
    Onuchic, LE
    Rossetti, S
    Harris, PC
    Somlo, S
    Guay-Woodford, L
    Germino, GG
    Moser, M
    Büttner, R
    Zerres, K
    HUMAN MUTATION, 2004, 23 (05) : 453 - 463
  • [5] Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1)
    Bergmann, C
    Senderek, J
    Sedlacek, B
    Pegiazoglou, I
    Puglia, P
    Eggermann, T
    Rudnik-Schöneborn, S
    Furu, L
    Onuchic, LF
    De Baca, M
    Germino, GG
    Guay-Woodford, L
    Somlo, S
    Moser, M
    Büttner, R
    Zerres, K
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2003, 14 (01): : 76 - 89
  • [6] New options for prenatal diagnosis in autosomal recessive polycystic kidney disease by mutation analysis of the PKHD1 gene
    Zerres, K
    Senderek, J
    Rudnik-Schöneborn, S
    Eggermann, T
    Kunze, J
    Mononen, T
    Kääriäinen, H
    Kirfel, J
    Moser, M
    Buettner, R
    Bergmann, C
    CLINICAL GENETICS, 2004, 66 (01) : 53 - 57
  • [7] Algorithm for efficient PKHD1 mutation screening in autosomal recessive polycystic kidney disease (ARPKD)
    Bergmann, C
    Küpper, F
    Domia, C
    Schneider, F
    Senderek, J
    Zerres, K
    HUMAN MUTATION, 2005, 25 (03) : 225 - 231
  • [8] Functional analysis of PKHD1 splicing in autosomal recessive polycystic kidney disease
    Bergmann, Carsten
    Frank, Valeska
    Kuepper, Fabian
    Schmidt, Christa
    Senderek, Jan
    Zerres, Klaus
    JOURNAL OF HUMAN GENETICS, 2006, 51 (09) : 788 - 793
  • [9] Homozygous Missense Mutation on Exon 22 of PKHD1 Gene Causing Fatal Autosomal Recessive Polycystic Kidney Disease
    Sathyan, Sajina
    Pournami, Femitha
    Madhavilatha, Gopala Krishna
    Tuteja, Amrit
    Nandakumar, Anand
    Prabhakar, Jyothi
    Jain, Naveen
    JOURNAL OF CHILD SCIENCE, 2021, 11 (01): : E70 - E73
  • [10] Functional analysis of PKHD1 splicing in autosomal recessive polycystic kidney disease
    Carsten Bergmann
    Valeska Frank
    Fabian Küpper
    Christa Schmidt
    Jan Senderek
    Klaus Zerres
    Journal of Human Genetics, 2006, 51 : 788 - 793