Finite groups with hall Schmidt subgroups

被引:8
作者
Kniahina, V. N. [1 ]
Monakhov, V. S. [2 ]
机构
[1] Gomel Engn Inst, Gomel 246035, BELARUS
[2] Gomel F Scorina State Univ, Dept Math, Gomel 246019, BELARUS
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2012年 / 81卷 / 3-4期
关键词
Hall subgroup; Schmidt subgroup; non-nilpotent group;
D O I
10.5486/PMD.2012.5205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Schmidt group is a non-nilpotent group whose every proper subgroup is nilpotent. We study the properties of a non-nilpotent group G in which every Schmidt subgroup is a Hall subgroup of G.
引用
收藏
页码:341 / 350
页数:10
相关论文
共 50 条
  • [31] Finite groups with P- subnormal Schmidt subgroups.
    Yi, X.
    Xu, Zh.
    Kamornikov, S. F.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2024, 30 (01): : 100 - 108
  • [32] On finite groups with K-Nσ-subnormal Schmidt subgroups
    Hussain, Muhammad Tanveer
    ALGEBRA AND DISCRETE MATHEMATICS, 2024, 37 (02): : 236 - 243
  • [33] FINITE GROUPS WITH HEREDITARILY G-PERMUTABLE SCHMIDT SUBGROUPS
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Perez-calabuig, V.
    Tyutyanov, V. N.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (03) : 522 - 528
  • [34] On One Property of Normal Hall Subgroups of Finite Groups
    X. Yi
    B. Cheng
    R. V. Borodich
    S. F. Kamornikov
    Siberian Mathematical Journal, 2025, 66 (2) : 291 - 297
  • [35] NEW CRITERIONS OF EXISTENCE AND CONJUGACY OF HALL SUBGROUPS OF FINITE GROUPS
    Guo, Wenbin
    Skiba, Alexander N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (07) : 2327 - 2336
  • [36] Finite groups whose maximal subgroups have the hall property
    Maslova N.V.
    Revin D.O.
    Siberian Advances in Mathematics, 2013, 23 (3) : 196 - 209
  • [37] The Fitting length of finite soluble groups I Hall subgroups
    Busetto, Giorgio
    Jabara, Enrico
    ARCHIV DER MATHEMATIK, 2016, 106 (05) : 409 - 416
  • [38] The Fitting length of finite soluble groups I Hall subgroups
    Giorgio Busetto
    Enrico Jabara
    Archiv der Mathematik, 2016, 106 : 409 - 416
  • [39] Finite π-Solvable Groups Whose Maximal Subgroups Have the Hall Property
    Monakhov, V. S.
    MATHEMATICAL NOTES, 2008, 84 (3-4) : 363 - 366
  • [40] Nonsolvable Finite Groups Whose All Nonsolvable Superlocals Are Hall Subgroups
    Vedernikov, V. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2020, 61 (05) : 778 - 794