Quantitative real-time PCR monitoring dynamics of Thermotoga neapolitana in synthetic co-culture for biohydrogen production

被引:17
作者
Okonkwo, Onyinye [1 ]
Lakaniemi, Aino-Maija [1 ]
Santala, Ville [1 ]
Karp, Matti [1 ]
Mangayil, Rahul [1 ]
机构
[1] Tampere Univ Technol, Lab Chem & Bioengn, POB 541, FI-33101 Tampere, Finland
关键词
Thermotoga neapolitana; hydA; 16S rRNA gene; Real-time quantitative polymerase; chain reaction; Hydrogen production; Primer design; FERMENTATIVE HYDROGEN-PRODUCTION; 16S RIBOSOMAL-RNA; CLOSTRIDIUM-THERMOCELLUM; BIOAUGMENTATION; STRATEGIES; BACTERIA; XYLOSE; THERMOSACCHAROLYTICUM; EFFICIENCY; BUTYRICUM;
D O I
10.1016/j.ijhydene.2017.12.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study demonstrates the potential for biohydrogen production in a co-culture of two ecologically distant species, Thermatoga neapolitana and Caldicellulosiruptor saccharolyticus, and the development of a quantitative real-time PCR (qPCR) method for quantifying the hyperthermophilic bacterium of the genus Thermotoga. Substrate utilization and H-2 production performance was compared to those of their individual cultures. The highest H-2 yields obtained were 2.7 +/- 0.05, 2.5 +/- 0.07 and 2.8 +/- 0.09 mol H-2/mol glucose for C. saccharolyticus, T. neapolitana, and their co-culture respectively. Statistical analysis comparing the H-2 production rate of the co-culture to either C. saccahrolyticus or T. neapolitana pure cultures indicated a significant difference in the H-2 production rate (p < 0.05: t-test), with the highest rate of H-2 production (36.02 mL L-1 h(-1)) observed from the co-culture fermentations. In order to monitor the presence of T. neapolitana in the bioprocess, we developed a qPCR method using 16S rRNA gene and hydrogenase (hydA) gene targets. The qPCR data using hydA primers specific to T. neapolitana showed an increase in hydA gene copies from 3.32 x 10(7) to 4.4 x 10(8) hydA gene copies per mL confirming the influence of T. neapolitana in the synthetic consortium. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3133 / 3141
页数:9
相关论文
共 64 条
[1]   Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste [J].
Abreu, Angela A. ;
Tavares, Fabio ;
Alves, Maria Madalena ;
Pereira, Maria Alcina .
BIORESOURCE TECHNOLOGY, 2016, 219 :132-138
[2]   Bioaugmentation of biogas production by a hydrogen-producing bacterium [J].
Acs, Norbert ;
Bagi, Zoltan ;
Rakhely, Gabor ;
Minarovics, Janos ;
Nagy, Katalin ;
Kovacs, Kornel L. .
BIORESOURCE TECHNOLOGY, 2015, 186 :286-293
[3]   Re-envisioning the role of hydrogen in a sustainable energy economy [J].
Andrews, John ;
Shabani, Bahman .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (02) :1184-1203
[4]  
Bouchez T, 2000, ENVIRON MICROBIOL, V2, P179
[5]   Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes [J].
Chandrasekhar, Kuppam ;
Lee, Yong-Jik ;
Lee, Dong-Woo .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (04) :8266-8293
[6]   Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production [J].
Chang, Jui-Jen ;
Chou, Chia-Hung ;
Ho, Cheng-Yu ;
Chen, Wei-En ;
Lay, Jiunn-Jyi ;
Huang, Chieh-Chen .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (19) :5137-5146
[7]   A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse [J].
Cheng, Jingrong ;
Zhu, Mingjun .
BIORESOURCE TECHNOLOGY, 2013, 144 :623-631
[8]   Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana [J].
d'Ippolito, Giuliana ;
Dipasquale, Laura ;
Vella, Filomena Monica ;
Romano, Ida ;
Gambacorta, Agata ;
Cutignano, Adele ;
Fontana, Angelo .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (06) :2290-2295
[9]   Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus [J].
de Vrije, T. ;
Mars, A. E. ;
Budde, M. A. W. ;
Lai, M. H. ;
Dijkema, C. ;
de Waard, P. ;
Claassen, P. A. M. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 74 (06) :1358-1367
[10]   Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana [J].
de Vrije, Truus ;
Bakker, Robert R. ;
Budde, Miriam A. W. ;
Lai, Man H. ;
Mars, Astrid E. ;
Claassen, Pieternel A. M. .
BIOTECHNOLOGY FOR BIOFUELS, 2009, 2