Deep learning as phase retrieval tool for CARS spectra

被引:42
|
作者
Houhou, Rola [1 ,2 ,3 ]
Barman, Parijat [3 ]
Schmitt, Micheal [1 ,2 ]
Meyer, Tobias [1 ,2 ,3 ]
Popp, Juergen [1 ,2 ,3 ]
Bocklitz, Thomas [1 ,2 ,3 ]
机构
[1] Friedrich Schiller Univ, Inst Phys Chem, Helmholtzweg 4, D-07743 Jena, Germany
[2] Friedrich Schiller Univ, Abbe Ctr Photon, Helmholtzweg 4, D-07743 Jena, Germany
[3] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
关键词
MAXIMUM-ENTROPY MODEL; RAMAN-SCATTERING; NEURAL-NETWORKS; COHERENT; SPECTROSCOPY; TIME;
D O I
10.1364/OE.390413
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Finding efficient and reliable methods for the extraction of the phase in optical measurements is challenging and has been widely investigated. Although sophisticated optical settings, e.g. holography, measure directly the phase, the use of algorithmic methods has gained attention due to its efficiency, fast calculation and easy setup requirements. We investigated three phase retrieval methods: the maximum entropy technique (MEM), the Kramers-Kronig relation (KK), and for the first time deep learning using the Long Short-Term Memory network (LSTM). LSTM shows superior results for the phase retrieval problem of coherent anti-Stokes Raman spectra in comparison to MEM and KK. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:21002 / 21024
页数:23
相关论文
共 50 条
  • [41] Deep Learning for Chondrogenic Tumor Classification through Wavelet Transform of Raman Spectra
    Conforti, Pietro Manganelli
    D'Acunto, Mario
    Russo, Paolo
    SENSORS, 2022, 22 (19)
  • [42] deepSIP: linking Type Ia supernova spectra to photometric quantities with deep learning
    Stahl, Benjamin E.
    Martinez-Palomera, Jorge
    Zheng, WeiKang
    de Jaeger, Thomas
    Filippenko, Alexei, V
    Bloom, Joshua S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (03) : 3553 - 3571
  • [43] Accelerating Molecular Vibrational Spectra Simulations with a Physically Informed Deep Learning Model
    Chen, Yuzhuo
    Pios, Sebastian V.
    Gelin, Maxim F.
    Chen, Lipeng
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (11) : 4703 - 4710
  • [44] Analysis of Raman Spectra by Using Deep Learning Methods in the Identification of Marine Pathogens
    Yu, Shixiang
    Li, Xin
    Lu, Weilai
    Li, Hanfei
    Fu, Yu Vincent
    Liu, Fanghua
    ANALYTICAL CHEMISTRY, 2021, 93 (32) : 11089 - 11098
  • [45] Retrieval of exoplanet emission spectra with HyDRA
    Gandhi, Siddharth
    Madhusudhan, Nikku
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (01) : 271 - 288
  • [46] Deep learning phase-field model for brittle fractures
    Motlagh, Yousef Ghaffari
    Jimack, Peter K.
    de Borst, Rene
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (03) : 620 - 638
  • [47] Tool Wear Monitoring Based on Transfer Learning and Improved Deep Residual Network
    Zhang, Nan
    Zhao, Jiawei
    Ma, Lin
    Kong, Haoqiang
    Li, Huaqiang
    IEEE ACCESS, 2022, 10 : 119546 - 119557
  • [48] An Effective Content Based Image Retrieval System Using Deep Learning Based Inception Model
    Ranjith, E.
    Parthiban, Latha
    Latchoumi, T. P.
    Kumar, S. Ananda
    Perera, Darshika G.
    Ramaswamy, Sangeetha
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 133 (02) : 811 - 829
  • [49] From Semantic Retrieval to Pairwise Ranking: Applying Deep Learning in E-commerce Search
    Li, Rui
    Jiang, Yunjiang
    Yang, Wenyun
    Tang, Guoyu
    Wang, Songlin
    Ma, Chaoyi
    He, Wei
    Xiong, Xi
    Xiao, Yun
    Zhao, Eric Yihong
    PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 1383 - 1384
  • [50] Deep learning a boon for biophotonics?
    Pradhan, Pranita
    Guo, Shuxia
    Ryabchykov, Oleg
    Popp, Juergen
    Bocklitz, Thomas W.
    JOURNAL OF BIOPHOTONICS, 2020, 13 (06)